- Угол между плоскостями. Метод координат. Задание 14
- Рекомендации о том, как найти угол между плоскостями
- Использование «метода координат» при решении стереометрических задач на нахождение угла между двумя плоскостями
- Двугранный угол. Подробная теория с примерами
- Как найти угол между плоскостями
- Нахождение угла между плоскостями (двугранный угол)
- Основные нюансы
- Подготовка к экзаменационному испытанию вместе со «Школково» — залог вашего успеха
- Угол между двумя пересекающимися плоскостями: определение, примеры нахождения, как найти угол между плоскостями
- Угол между плоскостями – определение
- Нахождение угла между двумя пересекающимися плоскостями
- Пример 1
Угол между плоскостями. Метод координат. Задание 14
Угол между плоскостями. Метод координант.
В этой статье я расскажу, как решать задачи на нахождение угла между плоскостями с помощью метода координат.
Сначала немного теории.
Две пересекающиеся плоскости образуют две пары равных между собой двугранных углов.
Величина двугранного угла измеряется величиной соответствующего линейного угла.
Чтобы построить линейный угол двугранного угла, нужно взять на линии пересечения плоскостей произвольную точку, и в каждой плоскости провести к этой точке луч перпендикулярно линии пересечения плоскостей. Угол, образованный этими лучами и есть линейный угол двугранного угла:
Пусть наши плоскости и
заданы уравнениями:
:
:
Косинус угла между плоскостями находится по такой формуле:
В ответе мы записываем , так как величиной угла между плоскостями называется величина меньшего двугранного угла.
Решим задачу, которая была предложена на пробнике для подготовке к ЕГЭ 17 марта 2012 года.
В правильной четырехугольной призме со стороной основания 12 и высотой 21 на ребре
взята точка М так, что
. На ребре
взята точка K так, что
. Найдите угол между плоскостью
и плоскостью
.
Сделаем чертеж. Так как мы будем использовать метод координат, сразу введем систему координат:
Теперь перед нами стоит задача написать уравнения плоскости и плоскости
Подробный алгоритм нахождения уравнения плоскости по трем точкам я описывала здесь.
После того, как мы найдем коэффициенты в уравнениях плоскости и плоскости
, подставим их в формулу для нахождения косинуса угла между плоскостями, и найдем угол.
Предлагаю вам посмотреть подробное видеорешение этой задачи:
Источник
Рекомендации о том, как найти угол между плоскостями
При решении стереометрических задач, где ключевым моментом является построение правильного чертежа, ученику необходимо иметь знания в области планиметрии и стереометрии.
При решении задач традиционным (геометрическим) методом у учеников возникают сложности в построении предполагаемого чертежа, дополнительных элементов, трудности в доказательных рассуждениях. Традиционный способ требует более точного построения и определения угла между плоскостями.
Использование «метода координат» при решении стереометрических задач на нахождение угла между двумя плоскостями
Встречаются такие задачи, в которых сложно построить сечения (плоскости) и определить линию пересечения плоскостей и найти такие прямые в данных плоскостях, которые будут перпендикулярны этой линии. В таких случаях на помощь приходит «метод координат».
В рамках данной статьи рассмотрим решение задач «методом координат» на нахождение угла между плоскостями. Данный метод алгоритмизирован и не требует построения искомого угла между плоскостями.
Для решения стереометрических задач ученик должен иметь теоретическую базу. Определения, теоремы и т.д. можно изучить в учебнике по геометрии Атанасяна Л.С. для 10-11 классов и Погорелова А.В. для 10-11 классов [1; 2]. Вспомним по данной теме основное определение:
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.
Определение подсказывает традиционный метод нахождения угла между плоскостями. Для решения этим методом:
- 1) необходимо увидеть или построить линию пересечения плоскостей;
- 2) построить прямые в плоскостях, перпендикулярные этой линии. Угол между этими прямыми будет искомым.
Но встречаются такие задачи, в которых сложно построить выше перечисленные элементы. «Метод координат» не требует построения угла между плоскостями и является универсальным методом, в котором заложен алгоритм нахождения данного угла.
Для этого необходимо составить уравнения плоскостей, для того чтобы найти их нормальные векторы. Далее находим косинус между этими векторами. Угол между этими векторами будет искомой величиной угла между плоскостями.
- Пусть даны уравнения двух плоскостей
и
Найдем нормальные векторы данных плоскостей:
При решении данных задач, необходимо знать основную формулу. Она определят угол между плоскостями, как угол между нормалями данных плоскостей.
Двугранный угол. Подробная теория с примерами
Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой. |
- При этом прямая – это ребро двугранного угла, а полуплоскости и — стороны или грани двугранного угла.
- Двугранный угол получает обозначение по своему ребру: «двугранный угол ».
- С понятием двугранного угла тесно связано понятия: угол между плоскостями.
Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей. |
Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:
Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ! |
Как найти угол между плоскостями
Найти угол между плоскостями (можно двумя способами: геометрическим и алгебраическим).
При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.
Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.
Если нужно найти, скажем, двугранный угол при основании правильной , то проще использовать геометрический способ, а если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.
Нахождение угла между плоскостями (двугранный угол)
Подготовка учащихся к сдаче ЕГЭ по математике, как правило, начинается с повторения основных формул, в том числе и тех, которые позволяют определить угол между плоскостями.
Несмотря на то, что этот раздел геометрии достаточно подробно освещается в рамках школьной программы, многие выпускники нуждаются в повторении базового материала.
Понимая, как найти угол между плоскостями, старшеклассники смогут оперативно вычислить правильный ответ в ходе решения задачи и рассчитывать на получение достойных баллов по итогам сдачи единого государственного экзамена.
Основные нюансы
Чтобы вопрос, как найти двугранный угол, не вызывал затруднений, рекомендуем следовать алгоритму решения, который поможет справиться с заданиями ЕГЭ. Вначале необходимо определить прямую, по которой пересекаются плоскости.
Затем на этой прямой нужно выбрать точку и провести к ней два перпендикуляра. Следующий шаг — нахождение тригонометрической функции двугранного угла, который образован перпендикулярами. Делать это удобнее всего при помощи получившегося треугольника, частью которого является угол. Ответом будет значение угла или его тригонометрической функции.
Подготовка к экзаменационному испытанию вместе со «Школково» — залог вашего успеха
В процессе занятий накануне сдачи ЕГЭ многие школьники сталкиваются с проблемой поиска определений и формул, которые позволяют вычислить угол между 2 плоскостями.
Школьный учебник не всегда есть под рукой именно тогда, когда это необходимо.
А чтобы найти нужные формулы и примеры их правильного применения, в том числе и для нахождения угла между плоскостями в Интернете в режиме онлайн, порой требуется потратить немало времени.
Математический портал «Школково» предлагает новый подход к подготовке к госэкзамену. Занятия на нашем сайте помогут ученикам определить наиболее сложные для себя разделы и восполнить пробелы в знаниях.
Мы подготовили и понятно изложили весь необходимый материал. Базовые определения и формулы представлены в разделе «Теоретическая справка».
Для того чтобы лучше усвоить материал, предлагаем также попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач различной степени сложности, например, на нахождение угла между прямой и плоскостью, представлена в разделе «Каталог». Все задания содержат подробный алгоритм нахождения правильного ответа. Перечень упражнений на сайте постоянно дополняется и обновляется.
Практикуясь в решении задач, в которых требуется найти угол между двумя плоскостями, учащиеся имеют возможность в онлайн-режиме сохранить любое задание в «Избранное». Благодаря этому они смогут вернуться к нему необходимое количество раз и обсудить ход его решения со школьным учителем или репетитором.
Угол между двумя пересекающимися плоскостями: определение, примеры нахождения, как найти угол между плоскостями
Статья рассказывает о нахождении угла между плоскостями. После приведения определения зададим графическую иллюстрацию, рассмотрим подробный способ нахождения методом координат. Получим формулу для пересекающихся плоскостей, в которую входят координаты нормальных векторов.
Угол между плоскостями – определение
В материале будут использованы данные и понятия, которые ранее были изучены в статьях про плоскость и прямую в пространстве. Для начала необходимо перейти к рассуждениям, позволяющим иметь определенный подход к определению угла между двумя пересекающимися плоскостями.
Заданы две пересекающиеся плоскости γ1 и γ2. Их пересечение примет обозначение c. Построение плоскости χ связано с пересечением этих плоскостей. Плоскость χ проходит через точку М в качестве прямой c.
Будет производиться пересечение плоскостей γ1 и γ2 с помощью плоскости χ. Принимаем обозначения прямой, пересекающей γ1 и χ за прямую a, а пересекающую γ2 и χ за прямую b.
Получаем, что пересечение прямых a и b дает точку M. Расположение точки M не влияет на угол между пересекающимися прямыми a и b, а точка M располагается на прямой c, через которую проходит плоскость χ.
Необходимо построить плоскость χ1 с перпендикулярностью к прямой c и отличную от плоскости χ. Пересечение плоскостей γ1 и γ2 с помощью χ1 примет обозначение прямых а1 и b1.
Видно, что при построении χ и χ1 прямые a и b перпендикулярны прямой c, тогда и а1, b1 располагаются перпендикулярно прямой c. Нахождение прямых a и а1 в плоскости γ1 с перпендикулярностью к прямой c, тогда их можно считать параллельными.
Таки же образом расположение b и b1 в плоскости γ2 с перпендикулярностью прямой c говорит об их параллельности. Значит, необходимо сделать параллельный перенос плоскости χ1 на χ, где получим две совпадающие прямые a и а1, b и b1.
Получаем, что угол между пересекающимися прямыми a и b1 равен углу пересекающихся прямых a и b. Рассмотрим не рисунке, приведенном ниже.
Данное суждение доказывается тем, что между пересекающимися прямыми a и b имеется угол, который не зависит от расположения точки M, то есть точки пересечения. Эти прямые располагаются в плоскостях γ1 и γ2. Фактически, получившийся угол можно считать углом между двумя пересекающимися плоскостями.
Перейдем к определению угла между имеющимися пересекающимися плоскостями γ1 и γ2.
Углом между двумя пересекающимися плоскостями γ1 и γ2 называют угол, образовавшийся путем пересечения прямых a и b, где плоскости γ1 и γ2 имеют пересечение с плоскостью χ, перпендикулярной прямой c. Рассмотрим рисунок, приведенный ниже.
Определение может быть подано в другой форме. При пересечении плоскостей γ1 и γ2, где c – прямая, на которой они пересеклись, отметить точку M, через которую провести прямые a и b, перпендикулярные прямой c и лежащие в плоскостях γ1 и γ2, тогда угол между прямыми a и b будет являться углом между плоскостями. Практически это применимо для построения угла между плоскостями.
При пересечении образуется угол, который по значению меньше 90 градусов, то есть градусная мера угла действительна на промежутке такого вида (0, 90]. Одновременно данные плоскости называют перпендикулярнымив случае, если при пересечении образуется прямой угол. Угол между параллельными плоскостями считается равным нулю.
Нахождение угла между двумя пересекающимися плоскостями
Обычный способ для нахождения угла между пересекающимися плоскостями – это выполнение дополнительных построений. Это способствует определять его с точностью, причем делать это можно с помощью признаков равенства или подобия треугольника, синусов, косинусов угла.
Рассмотрим решение задач на примере из задач ЕГЭ блока C2.
Пример 1
Задан прямоугольный параллелепипед АВСDA1B1C1D1, где сторона АВ=2, AD=3, АА1=7, точка E разделяет сторону АА1 в отношении 4:3. Найти угол между плоскостями АВС и ВED1.
Для наглядности необходимо выполнить чертеж. Получим, что наглядное представление необходимо для того, чтобы было удобней работать с углом между плоскостями.
Производим определение прямой линии, по которой происходит пересечение плоскостей АВС и ВED1. Точка B является общей точкой. Следует найти еще одну общую точку пересечения. Рассмотрим прямые DA и D1E, которые располагаются в одной плоскости ADD1. Их расположение не говорит о параллельности, значит, они имеют общую точку пересечения.
Однако, прямая DA расположена в плоскости АВС, а D1E в BED1. Отсюда получаем, что прямые DA и D1E имеют общую точку пересечения, которая является общей и для плоскостей АВС и BED1. Обозначает точку пересечения прямых DA и D1Eбуквой F. Отсюда получаем, что BF является прямой, по которой пересекаются плоскости АВС и ВED1.
Для получения ответа необходимо произвести построение прямых, расположенных в плоскостях АВС и ВED1 с прохождением через точку, находящуюся на прямой BF и перпендикулярной ей. Тогда получившийся угол между этими прямыми считается искомым углом между плоскостями АВС и ВED1.
Отсюда видно, что точка A – проекция точки E на плоскость АВС. Необходимо провести прямую, пересекающую под прямым углом прямую BF в точке М. Видно, что прямая АМ – проекция прямой ЕМ на плоскость АВС, исходя из теоремы о тех перпендикулярах AM⊥BF. Рассмотрим рисунок, изображенный ниже.
∠AME — это искомый угол, образованный плоскостями АВС и ВED1. Из получившегося треугольника АЕМ можем найти синус, косинус или тангенс угла, после чего и сам угол, только при известных двух сторонах его.
По условию имеем, что длина АЕ находится таким образом: прямая АА1 разделена точкой E в отношении 4:3, то означает полную длину прямой – 7 частей, тогда АЕ= 4 частям. Находим АМ.
Необходимо рассмотреть прямоугольный треугольник АВF. Имеем прямой угол A с высотой АМ. Из условия АВ=2, тогда можем найти длину AF по подобию треугольников DD1F и AEF. Получаем, что AEDD1=AFDF⇔AEDD1=AFDA+AF⇒47=AF3+AF⇔AF=4
Необходимо найти длину стороны BF из треугольника ABF, используя теорему Пифагора. Получаем, что BF =AB2+AF2=22+42=25. Длина стороны АМ находится через площадь треугольника ABF. Имеем, что площадь может равняться как SABC=12·AB·AF, так и SABC=12·BF·AM.
Получаем, что AM=AB·AFBF=2·425=455. Тогда можем найти значение тангенса угла треугольника АЕМ. Получим:
Искомый угол, получаемый пересечением плоскостей АВС и BED1 равняется arctg5, тогда при упрощении получим arctg5=arcsin 306=arccos66.
Ответ: arctg5=arcsin 306=arccos66.
Некоторые случаи нахождения угла между пересекающимися прямыми задаются при помощи координатной плоскости Охуz и методом координат. Рассмотрим подробней.
Если дана задача, где необходимо найти угол между пересекающимися плоскостями γ1 и γ2, искомый угол обозначим за α.
Тогда заданная система координат показывает, что имеем координаты нормальных векторов пересекающихся плоскостей γ1 и γ2. Тогда обозначим, что n1→=n1x, n1y, n1z является нормальным вектором плоскости γ1, а n2→=(n2x, n2y, n2z) — для плоскости γ2. Рассмотрим подробное нахождение угла, расположенного между этими плоскостями по координатам векторов.
Необходимо обозначить прямую, по которой происходит пересечение плоскостей γ1 и γ2 буквой c. На прямой с имеем точку M, через которую проводим плоскость χ, перпендикулярную c. Плоскость χ по прямым a и b производит пересечение плоскостей γ1 и γ2 в точке M.
из определения следует, что угол между пересекающимися плоскостями γ1 и γ2 равен углу пересекающихся прямых a и b, принадлежащих этим плоскостям соответственно.
В плоскости χ откладываем от точки M нормальные векторы и обозначаем их n1→ и n2→. Вектор n1→ располагается на прямой, перпендикулярной прямой a, а вектор n2→ на прямой, перпендикулярной прямой b. Отсюда получаем, что заданная плоскость χ имеет нормальный вектор прямой a, равный n1→ и для прямой b, равный n2→. Рассмотрим рисунок, приведенный ниже.
Отсюда получаем формулу, по которой можем вычислить синус угла пересекающихся прямых при помощи координат векторов.
Получили, что косинусом угла между прямыми a и b то же, что и косинус между пересекающимися плоскостями γ1 и γ2 выводится из формулы cos α=cosn1→, n2→^=n1x·n2x+n1y·n2y+n1z·n2zn1x2+n1y2+n1z2·n2x2+n2y2+n2z2, где имеем, что n1→=(n1x, n1y, n1z) и n2→=(n2x, n2y, n2z) являются координатами векторов представленных плоскостей. Вычисление угла между пересекающимися прямыми производится по формуле:
Источник