- Углеродное волокно: способ получения, свойства, применение
- Углеволокно. Свойства и применение. Виды заготовок и особенности
- Технология изготовления
- Углеволокно отличается высокой стоимостью, так как технология его производства достаточно затратная и сложная. В качестве исходного сырья для получения углеволокна применяются органические волокна. Задача производителя – удалить из них все лишнее, кроме атомов углерода.
- Виды полуфабрикатного сырья из углеволокна
Углеродное волокно: способ получения, свойства, применение
Углеродное волокно — материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна — это органические волокна, подвергшиеся термическому воздействию при температурах 1000-3000°C и содержащие 92-99,99 % углерода [8].
Получение углеродных волокон
УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рисунке 7.1 [8].
Рисунок 7.1 – Структуры, образующиеся при окислении ПАН-волокна
После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.
Дополнительная переработка УВ
Углеродные волокна могут выпускаться в разнообразном виде: штапелированные (резаные, короткие) нити, непрерывные нити, тканые и нетканые материалы. Наиболее распространенный вид продукции — жгуты, пряжа, ровинг, нетканые холсты. Изготовление всех видов текстильной продукции производится по обычным технологиям, так же как для других видов волокон. Вид текстильной продукции определяется предполагаемым способом использования УВ в композиционном материале, точно так же, как и сам метод получения композита.
Свойства углеродных волокон
Впервые получение и применение углеродных волокон было предложено и запатентовано известным американским изобретателей Томасом Алва Эдисоном в 1880 году в качестве нитей накаливания в электрических лампах [8].
Они оказались наиболее подходящим армирующим материалом для изготовления ракетных двигателей, так как обладают высокой термостойкостью, хорошими теплоизоляционными свойствами, коррозионной стойкостью к воздействию газовых и жидких сред, высокими удельными прочностью, сопротивлением усталости и жесткостью.
По сравнению с обычными конструкционными материалами, например, алюминием или сталью, композиты с углеродными волокнами обладают некоторыми полезными свойствами.
Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.
Они имеют исключительно высокую термостойкость: в инертных средах или в вакууме – до 3000°С, на воздухе – до 450°С.
Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2·10 −3 до 10 6 Ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.
Углеродные волокна превосходят все известные жаростойкие волокнистые материалы благодаря большой активной поверхности до 2500 м 2 /г, высокой прочности (3,6 Гн/м 2 ). Углеродные волокна обладают отличными сорбционными свойствами (1 гр. поглощает до 50 гр. нефтепродуктов) [8].
Применение углеродных волокон
Свойства углеродных волокон предопределяют возможность их применения в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике.
Благодаря высокой химической стойкости углеродные волокна применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов.
Электропроводность углеродных волокон позволяет бороться и со статическим электричеством: достаточно ввести в материал (ткань, бумагу) всего 0,02—1% углеродного волокна, чтобы электрические заряды полностью «стекали» с этого материала, как после обработки антистатиком.
Углеродные материалы, обладающие высокой адсорбционной активностью, с успехом применяют в виде повязок, тампонов и дренажей при лечении открытых ран и ожогов (в том числе и химических); для очистки крови и других биологических жидкостей; как лекарственное средство при отравлениях (благодаря их высокой способности сорбировать яды); как носители лекарственных и биологически активных веществ.
Углеродные волокна применяют для армирования композиционных, теплозащитных, химостойких в качестве наполнителей в различных видах углепластиков. Из модернезированных углеволокон изготавливают электроды, термопары, экраны, поглощающие электромагнитное излучение, изделия для электро- и радиотехники. На основе углеродных волокон получают жесткие и гибкие электронагреватели, обогреваемую одежду и обувь. Нетканые углеродные материалы служат высокотемпературной изоляцией технологических установок и трубопроводов. Углеволокнистые ионообменники служат для очистки воздуха, а также технологических газов и жидкостей, выделения из последних ценных компонентов, изготовления средств индивидуальной защиты органов дыхания [9].
В настоящее время углеродные волокна используют для термозащиты космических кораблей, самолетов, ракет, изготовления их носовых частей, деталей двигателей, теплопроводящих устройств, для энергетических установок и производства активированных углеродных волокон (например, в накопителях электроэнергии, аккумуляторах, батареях, устройствах-модулях по очистке газов, где требуются новые, в частности, токопроводящие углеродные волокна-сорбенты).
На основе вискозных нитей и волокон изготавливают нити, ленты, ткани, а также дисперсный порошок из размолотых волокон (Урал ®, УВК ®, Вискум ®), нетканый материал (Карбопон ®), активированные сорбирующие ткани (Бусофит ®), активированные сорбирующие нетканые материалы (Карбопонактив ®).
На основе вискозных штапельных волокон изготавливают волокна и нетканые материалы: карбонизованые — Углен ® и графитированые — Грален ®.
На основе нитей и жгутов изготавливают ленты и ткани (ЛУ ®, УКН ®, Кулон ®, Элур ®), активированные сорбирующие волокна и нетканые материалы (Актилен ®, Ликрон ®), дисперсный порошок из размолотых волокон (Ваулен®).
Волокна и нетканые материалы: карбонизованные — Эвлон ® и графитированные — Конкор ®.
Выпускают углеродные волокона и за рубежом:
— в США: Торнел ®, Целион ®, Фортафил ®;
— в Великобритании: Модмор ®, Графил ®;
— в Японии: Торейка ®, Куреха-лон ®.
Углеродное волокно и ткани из углеродных волокон
Помимо высоких прочностных свойств и малого веса, углеродное волокно и композиты на его основе (углепластик) имеют черный цвет и хорошо проводят электричество, что определяет и ограничивает области, где применяется углепластик и углеродное волокно. Кроме того, углеродное волокно и углепластик имеют очень низкий, практически нулевой коэффициент линейного расширения, что делает углеродное волокно незаменимым в некоторых специальных областях применения.
Производителям тканых материалов углеродное волокно поставляется в виде нитей, которые представляют собой группу элементарных углеродных волокон. Количество углеродного волокна в нити оценивается числом «К» — число тысяч элементарных углеродных волокон. Самое меньшее и самое дорогое углеродное волокно — 1К, наиболее распространенное углеродное волокно 3К, существуют также нити из углеродного волокна с К = 6, 12, 24, 48. Плоские ткани, где используется углеродное волокно 12K имеют плотность от 160 до 380 гр/м 2 .
Дата добавления: 2017-01-13 ; просмотров: 10739 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Углеволокно. Свойства и применение. Виды заготовок и особенности
Углеволокно (УВ) – специализированный прочный материал, состоящий из тонких нитей толщиной от 5 до 10 мкм, сформированных атомами углерода. Обычно они в дальнейшем собираются для изготовления особой пряжи. Особенность данного материала в химической инертности, малом удельном весе, а также высокой прочностью к растяжению.
Технология изготовления
Углеволокно отличается высокой стоимостью, так как технология его производства достаточно затратная и сложная. В качестве исходного сырья для получения углеволокна применяются органические волокна. Задача производителя – удалить из них все лишнее, кроме атомов углерода.
Чтобы получить углеродное волокно, исходное сырье окисляют на воздухе, долго воздействуя на него при температуре 250°C. Длительность этого процесса может доходить до 1 суток. Температура способствует строению в волокнах особенных лестничных структур атомов.
На следующем производственном этапе выполняется постепенный нагрев до температуры 800°C, а затем ее повышением до 1500°C. Это происходит уже в среде азота или аргона. Данный процесс называется карбонизация. Он заканчивается образованием графитовой структуры.
Финальная стадия производства называется графитизация. Это очень ресурсозатратный сложный процесс, который подразумевает прогрев формируемого волокна до 3000°C. В итоге в нем остается не более 1% примесей, основную же структуру занимают именно атомы углерода.
Полученные волокна в разы тоньше человеческого волоса. В итоге они собираются пучками, после чего из них обычно сплетается подобие ткани. Такой материал в основном применяется для изготовления различных изделий методом соединения слоями с использованием в качестве связующего полимерных смол.
Виды полуфабрикатного сырья из углеволокна
Волокна перерабатываются в различные материалы, используемые как полуфабрикат для получения других изделий. Производители предлагают свое сырье в таком виде:
- Резаные нити.
- Непрерывные нити.
- Тканые и нетканые материалы.
- Ленты.
- Жгуты.
- Пряжа.
Вся эта продукция применяется в композитных материалах, где углеволокно служит армирующим слоем. В качестве же связующего, может использовать смола, бетон и т.д. Также существуют варианты применения углеродных волокон в чистом виде, однако в этом случае они ценятся не за прочность, а к примеру адсорбирующие качества.
Свойства углеродного волокна
Материал имеет выдающиеся качества, за счет чего является незаменимым во многих направлениях. К главным техническим параметрам углеродного волокна можно отнести:
- Температурную стойкость.
- Химическую нейтральность.
- Высокую удельную прочность.
- Повышенные теплофизические характеристики.
Материал способен выносить нагрев вплоть до 1600-2000°С без изменения качеств, при условии нахождения в бескислородной среде. Данное свойство углеволокна дает возможность его использовать как тепловой экран в различных устройствах, эксплуатируемых в условиях повышенных экстремальных температур.
Углеволокно способно переносить контакт практически с любыми химическими веществами. Но все же оно не идеальное, так как окисляется в кислородной среде при сильном нагреве. В итоге реально использовать углеродное волокно на воздухе можно только при условии нагрева не более, чем 370°С. Это все же не так плохо. Нужно отметить, что обычно материал находится в композите, где не контактирует с воздухом. Если связующий компонент композита способен держать большую температуру чем 370°С, то и для углеволокна предел будет ограничен только стойкостью внешней оболочки. Пока последняя не разрушится, волокно будет работать без изменения рабочих качеств.
Удельная прочность углеволокна доходит до 2,5-3,5 ГПа при воздействии на разрыв. Это один из самых крепких материалов. При этом он гибкий и очень легкий. Изделия из углеволокна в разы превосходят возможности пластиков, дерева и т.д. Благодаря этому из них делают облегченные сверхмощные рамы для велосипедов, мотоциклов и даже детали обшивки гоночных автомобилей, космических аппаратов, самолетов.
При пропускании через углеволокно электрического тока, оно сильно разогревается. Именно это изначально и являлось основным ценным свойством материала. Его изобретатель Т.Эдисон разработал технологию получения волокон из углерода именно благодаря тому, что тот при пропускании тока греется. Ученый использовал УВ в качестве нити накаливания для своих электрических ламп освещения. В дальнейшем такое применение было прекращено, так как использование вольфрама более практичное. Сейчас токопроводимостью углеволокна пользуются в электронике.
Где используется
Углеродное волокно применяется в самых разнообразных сферах и областях, так как ценится за легкость и прочность.
Углеволокно используется в таких направлениях производства:
- Спортивного инвентаря.
- Авиационной промышленности.
- Космонавтике.
- Ветроэнергетике.
- Машиностроении.
- Строительстве.
- Системах фильтрации.
В больших объемах УВ расходуется в строительной сфере. В своем большинстве он нужен для реставрации старинных архитектурных сооружений. Одним из примеров такого применения является углебетон. Это композитный материал, представляющий собой по составу обычный бетон, в который слоями вложено углеволокно. Он намного прочнее прочих бетонов, к тому же не боится коррозии, так как не имеет стальной арматуры. Также углеволокном, с применением полимерных смол, укрепляют различные поврежденные поверхности, чтобы вернуть их монолитность перед оштукатуриванием, не создавая слишком толстый слой штукатурки.
УВ применяется также для изготовления систем фильтрации. Оно обладает очень выраженными абсорбирующими качествами. Это позволяет фильтрам на его основе удалять органические и хлорорганические соединения. Считается, что они позволяют убрать из питьевой воды сторонние вкус и запахи. Само УВ при этом является полностью безопасным для человека, так как не выделяет никаких опасных компонентов в жидкость.
Что такое карбон
Одним их самых известных материалов, получаемых из углеволокна, является карбон. Он изготавливается из хаотично расположенных волокон, из которых формируются пучки. Последние переплетаются по схожей технологии, что применяется при изготовлении тканей. Количество ниток в пучках исчисляется тысячами. Чем их больше, тем толще карбон. В связи с этим в его названии применяется маркировка, указывающая на количество волокон. Так, если толщина обозначена как 2.5K, то это говорит, что в карбон вплетено 2,5 тыс. волокон. Встречается материал разной толщины: 6K, 12K и даже 24 К.
Стоит отметить, что карбон толщиной в 12К настолько прочный, что преимущественно применяется в военной промышленности. Из него делают головки баллистических ракет, и даже лопасти для вертолетов. Углеволокно в карбоне такой толщины способно выносить колоссальные нагрузки, от которых обычный металл просто изогнется. При этом это очень легкий материал.
Что такое углепластик
Многие знают об углепластике, который также содержит в себе УВ. Для его формирования применяются 3 технологии:
При использовании мокрого способа, углеродное волокно укладывается слоями в формы, между ними наносится смола. Чаще всего применяется эпоксидная, или полиэфирная. В итоге сделанное таким образом изделие высушивается до полимеризации связующего, после чего извлекается из формы.
Также распространенным методом является прессование. Для этого исходное сырье пропитываться смолой, затем спрессовывается. В итоге во время сжатия полимер затвердевает, и на выходе получается готовое изделие. Оно отличается от получаемых другими методами тем, что имеет ребристую поверхность. Особенность этой технологии в том, что возможно делать в итоге предмет практически любой объемной формы.
Также из углеволокна можно изготавливать трубы методом намотки. Для этого применяется только тканый или нетканый материал в виде холста. Он наматывается на цилиндр нужного диаметра, с нанесением между слоями смолы. В итоге достаточно быстро формируются трубки. Обычно их используют для изготовления легких лыжных палок, удилищ. Аналогичным методом делают и облегченные рамы для спортивных велосипедов.
Недостатки углеволокна и изделий из него
У углеволокна имеются и недостатки. В целом это хороший материал, но композиты на его основе далеко не идеальные. Они имеют ряд слабых сторон:
- Слабо держат точечные удары.
- Сложны в изготовлении.
Сами по себе композитные материалы на основе углеволокна отличаются превосходной стойкостью. При этом они плохо переносят точечные удары. В итоге от такого воздействия на них могут образовываться сколы. Конечно проблема здесь не в самом углеволокне, а смоле. Волокно служит внутренней арматурой, а сама смола выполняет силовую скрепляющую функцию. Так что при ударах скалывается именно она.
Сложно изготовить как само углеволокно, так и в дальнейшем изделия из него. Нужно укладывать его слой за слоем, и промазывать связывающим полимером. К примеру, чтобы сформировать лист углепластика толщиной 1 мм, нужно уложить 4 слоя углеволокна. То есть сам процесс достаточно длительный и кропотливый.
Очень часто под видом изделий из углеволокна продают стеклопластик и подобные композиты. Внешне они могут быть похожи, но являются менее прочными. Так что не всегда, если заявлено что изделие содержит УВ, это на самом деле так, и оно отличается повышенной прочностью.
Источник