Удобный способ представления графической информации с помощью чисел

Кроссворд Кодирование информации (5 класс)

Кроссворд Кодирование информации — интерактивная (онлайн) и печатная версия для использования на уроках информатики в 5 классе. Кроссворд взят из рабочей тетради Информатика 5 класс ФГОС (задание №100 к §7). Кроссворд можно использовать на уроке во время актуализации и проверки усвоения темы «Кодирование информации».

Кроссворд Кодирование информации

По горизонтали:
3. Французский математик, в честь которого названа прямоугольная система координат. 6. Способ кодирования информации с помощью чисел. 8. Способ кодирования информации с помощью символов того же алфавита, что и исходный текст. 9. Представление информации с помощью некоторого кода. 10. Игра, в которой фигуры перемещаются по клеткам с координатами.

По вертикали:
1. Один из удобных способов представления графической информации с помощью чисел (два слова через тире). 2. Способ кодирования информации с помощью рисунков или значков. 4. Французский педагог, придумавший специальный способ представления информации для слепых. 5. Система условных знаков для представления информации. 7. Графическая форма представления информации (множественное число).

Скачать версию для печати (77Кб, pdf) — Кроссворд Кодирование информации

Ответы на кроссворд Кодирование информации:
По горизонтали: 3. Декарт. 6. Числовой. 8. Символьный. 9. Кодирование. 10. Шахматы.
По вертикали: 1. Метод-координат. 2. Графический. 4. Брайль. 5. Код. 7. Схемы.

Источник

§7. Кодирование информации — Ответы рабочая тетрадь Босов 5 класс

79. Заполните таблицу.

80. Запишите цифрами числа, встречающиеся в тексте.

Миллиард – очень большое число. За тридцать лет с первого января тысяча девятьсот семидесятого года по тридцать первое декабря тысяча девятьсот девяносто девятого года прошло десять тысяч девятьсот пятьдесят семь суток, что составляет двести шестьдесят две тысячи девятьсот шестьдесят восемь часов или девятьсот сорок шесть миллионов шестьсот восемьдесят четыре тысячи восемьсот секунд. Значит, за тридцать лет не пройдёт и миллиарда секунд.

1000000000, 30, 1, 1970, 31, 1999, 10957, 262968, 946684800, 30, 1000000000.

81. Представьте в виде арифмитических выражений следующие утверждения.

а) Если к трём прибавить четыре, потом умножить полученное число на четыре и разделить на разность восьми и шести, то в результате получится четырнадцать.

((4 + 3) * 4) / (8 — 6) = 14

б) Разность двадцати семи сотых и девяти сотых равна восемнадцати сотым.

82. Заполните таблицу, расположенную слева, и запишите содержащуюся в ней информацию в виде арифметичских выражений в таблице справа.

83. Дана кодовая таблица флажковой азбуки.

Старший помощник Лом сдает экзамен капитану Врунгелю. Помогите ему прочитать следующие слова и попытайтесь объяснить их значения.

84. Что прочитал Лом на флагах встречной шхуны?

85. Старший помощник Лом оказался старательным учеником. Чтобы порадовать капитана Врунгеля, он выучил морскую семафорную азбуку, в которой каждая буква кодируется определнным положением рук с флажками.

Расшифруйте подаваемые Ломом сигналы.

86. Дана кодовая таблица азбуки Морзе.

Расшифруйте следующие записи.

87. Зашифруйте с помощью азбуки Морзе.

88. Поставьте каждой букве в соответствие ее порядковый номер в алфавите (заполните пустые клетки).

Зная, что каждому числу соответствует буква алфавита с таким же порядковым номером, расшифруйте следующие сообщения.

а) 12-21-12-21-26-12-1 12-21-12-21-26-16-15-12-21 19-26-10-13-1 12-1-17-32-26-16-15.

Кукушка кукушонку сшила капюшон.

б) 20-12-7-20 20-12-1-25 20-12-1-15-10 15-1 17-13-1-20-12-10 20-1-15-6.

Ткёт ткач ткани на платки Тане.

89. Известно, что некто расположил все буквы алфавита по кругу и заменил каждую букву исходного сообщения на следующую после нее. Декодируйте полученные шифровки:

а) об оёу й тфеб оёу. — На нет и суда нет.

б) лпоёч — еёмф гёоёч. — Конец — делу венец.

90. Декодируйте текст.

21 * 12-16-4-16 * 19-10-13-30-15-29-6 * 14-29-26-24-29, 20-16-20 * 17-16-2-6-5-10-20 * 16-5-15-16-4-16. 12-20-16 * 19-10-13-7-15 * 9-15-1-15-10-33-14-10, 20-16-20 * 17-16-2-6-5-10-20 * 20-29-19-33-25-10.

Декодированный текст: У кого сильные мышцы, тот победит одного. Кто силен знаниями, тот победит тысячи.

Правило кодирования установите по ключу.

Ключ: 12-16-5 — расшифровывается как система условных знаков для представления информации. (Код)

91. Декодируйте текст.

21-19-22-6-16-17 * 4 * 22-26-7-16-11-11 — 14-7-5-13-17 * 4 * 3-17-33.

Ответ: Трудно в учении — легко в бою.

Правило кодирования установите по ключу.

Ключ: 11-16-21-7-19-16-7-21 — расшифровывается как самый современный информационный канал. (Интернет)

92. Чтобы узнать зашифрованное слово, возьмите только первые слоги из данных слов:

а) колос, мебель, таракан — Комета
б) молоко, нерест, таракан — Монета
в) кора, лото, боксер — Колобок
г) баран, рана, банщик — Барабан
д) монета, лошадь, корова — Молоко

93. Чтобы узнать зашифрованное слово, возьмите только вторые слоги из данных слов:

а) соловей, потолок — Лото
б) змея, рама — Яма
в) пуговица, молоток, лава — Голова
г) укор, бузина, тина — Корзина
д) поворот, пороша, канава — Ворона

94. Чтобы узнать зашифрованное слово, возьмите только последние слоги из данных слов:

а) мебель, ружьё — Бельё
б) соломка, пора, мель — Карамель
в) лиса, письмо, перелёт — Самолёт
г) пуловер, пальто, полёт — Вертолёт
д) молоко, реле, лассо — Колесо

Читайте также:  Домашние способы узнать беременна или нет без теста

95. Кодирование текста осуществляется перестановкой букв в каждом слове по одному и тому же правилу. Восстановите зашифрованную информацию и сформулируйте правило кодирования.

96. Известно, что некто для шифрования сообщений после каждой гласной буквы вставляет букву «А», а после согласной — букву «Т». Декодируйте зашифрованную информацию.

97. Придумайте собственным способ кодирования букв русского алфавита: графический (с помощью особых картинок или знаков), числовой (с помощью чисел) или символьный (с помощью тех же букв).

А-1 Б-8 В-15 Г-22 Д-28 Е-2 Ё-9 Ж-16 З-23 И-29 Й-3 К-10 Л-17 М-24 Н-30 О-4 П-11 Р-18 С-25 Т-31 У-5 Ф-12 Х-19 Ц-26 Ч-32 Ш-6 Щ-13 Ъ-20 Ы-27 Ь-33 Э-7 Ю-14 Я-21

С помощью собственного кода закодируйте слово «УСПЕХ».

98. Впишите подходящие по смыслу слова.

Чтобы рубить дрова, нужен топор (14 2 3 2 7)
а чтобы полить огород — лейка (10 4 5 1 6)

Рыбаки сделали во льду прорубь (3 7 2 7 8 9 11)
и стали ловить рыбу.

Самый колючий зверь в лесу — это ёж (12 13)

Разгадайте код и прочитайте с его помощью пословицу:

1, 2, 3, 4, 5, 1, 6 — Копейка
7, 8, 9, 10, 11 — рубль
9, 4, 7, 4, 13, 12, 14 — бережёт.

99. На координатной плоскости отметьте и пронумеруйте точки, координаты которых приведены ниже. Соедините точки в заданной последовательности. Помните, первое число — координата по оси ОХ, второе — по оси OY. После проверки правильности выполнения задания можно раскрасить полученную картинку цветными карандашами.

100. Разгадайте кроссворд «Кодирование информации».

По горизонтали. 3. Французский математик, в честь которого названа прямоугольная система координат. — Декарт 6. Способ кодирования информации с помощью чисел. — Числовой 8. Способ кодирования информации с помощью символов того же алфавита, что и исходный текст. — Символьный 9. Представление информации с помощью некоторого кода. — Кодирование 10. Игра, в которой фигуры перемещаются по клеткам с координатами. — Шахматы

По вертикали. 1. Один из удобных способов представления графической информации с помощью чисел. — Метод координат 2. Способ кодирования информации с помощью рисунков или значков. — Графический 4. Французский педагог, придумавший специальный способ представления информации для слепых. — Брайль 5. Система условных знаков для представления информации. — Код 7. Графическая форма представления информации (множественное число). — Схемы

101. Если «жало» — это «двор», а «хна» — это «зев», то чему равна «ель»? А также — «мель» и «щель»? (Для ответа на вопросы посмотрите внимательно на клавиатуру.)

Необходимо на клавиатуре сместить на 1 клавишу влево, чтобы получить необходимый результат.

Ель — кот
Мель — скот
Щель — шкот

Источник

Удобный способ представления графической информации с помощью чисел

Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.

Компьютерная графика — область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств.

Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений — от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации.

Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.

История компьютерной графики

Результатами расчетов на первых компьютерах являлись длинные колонки чисел, напечатанных на бумаге. Для того чтобы осознать полученные результаты, человек брал бума­гу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций . Иначе говоря, человек вручную производил графическую обработку результатов вычислений. В графическом виде такие результаты становятся более наглядными и понятными .

Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) по­лучались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудря­лись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.

Читайте также:  Когда разрешается удаление сдвиг внутреннего центратора независимо от способа сварки

Рис. 1 Символьная печать.

Затем появились специальные устройства для графиче­ского вывода на бумагу — графопостроители (другое на­звание — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображе­ния: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.

Настоящая революция в компьютерной графике про­изошла с появлением графических дисплеев. На экране гра­фического дисплея стало возможным получать рисунки, чер­тежи в таком же виде, как на бумаге с помощью каранда­шей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Су­ществуют принтеры цветной печати, дающие качество ри­сунков на уровне фотографии.

Представление графической информации в компьютере

Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.

Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.

Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.

Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.

При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100×100 точек требуется 10000 бит.

Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).

Информационный объём такого изображения увеличивается в три раза: V = 30000бит.

Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).

Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.

Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).

Описание цвета пикселя является кодом цвета.

Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.

Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.

Чем больше глубина цвета, тем больше объем графического файла.

Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти.

Каково максимально возможное число цветов в палитре изображения?

Решение . Число точек изображения равно 32 ⋅ 3 2 = 1024. Мы знаем, что 512 байтов = 512 ⋅ 8=4096 бит. Найдём глубину цвета 4096÷1024=4. Число цветов равно 24 = 16.

Цвет на Web-страницах кодируется в виде RGB-кода в шестнадцатеричной системе: #RRGGBB, где RR, GGи BB — яркости красного, зеленого и синего, записанные в виде двух шестнадцатеричных цифр; это позволяет закодировать 256 значений от 0 (0016) до 255 (FF16) для каждой составляющей.

При обозначении цветов в HTML-документах вначале ставят знак номера #.

В HTML: #FF0000 —интенсивно красный цвет, #00FF00 — зелёный цвет, #0000FF — синий цвет. Отсутствие цветов (#000000) даёт чёрный цвет, а самое интенсивное сочетание всех трёх каналов (#FFFFFF) даёт белый цвет.

FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.

Чтобы получить светлый оттенок какого-то «чистого» цвета, нужно одинаково увеличить нулевые составляющие; например, чтобы получить светло-красный цвет, нужно сделать максимальной красную составляющую и, кроме этого, одинаково увеличить остальные — синюю и зелёную: #FF9999 (сравните с красным: #FF0000).

Чтобы получить тёмный оттенок чистого цвета, нужно одинаково уменьшить все составляющие, например, #660066 — это тёмно-фиолетовый цвет (сравните с фиолетовым #FF00FF).

Заметим, что если старший бит в коде (первая, третья или пятая цифра) находится в диапазоне от 0 до 3, то можно считать, что эта цветовая компонента отсутствует в цвете, то есть #0F0F0F — это чёрный цвет.

Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.

Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.

Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.

Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:

— координаты центра окружности;

— значение радиуса r;

— цвет заполнения (если окружность не прозрачная);

Читайте также:  Смекта порошок от диареи способ применения

— цвет и толщина контура (в случае наличия контура).

Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.

Кодирование графической информации

Графическую информацию можно представлять в двух формах: аналоговой и цифровой.

Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.

Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.

Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в цифровую. Этот процесс называется «кодирование», поскольку каждому элементу назначается конкретное значение в форме двоичного кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества цветных фрагментов (метод мозаики).

Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.

Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.

Современная компьютерная графика

Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов науч­ных исследований, графическая обработка результатов рас­четов, проведение вычислительных экспериментов с нагляд­ным представлением их результатов (Рис. 6).

Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.

Деловая графика. Эта область компьютерной графики предназначена для со­здания иллюстраций, часто используемых в работе различ­ных учреждений.

Плановые показатели, отчетная докумен­тация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные ма­териалы (Рис. 7).

Рис. 7 Графики, круговые и столбчатые диаграммы.

Программные средства деловой графики обычно включа­ются в состав табличных процессоров (электронных таблиц).

Плановые показатели, отчетная докумен­тация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные ма­териалы (Рис. 7).

Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной гра­фики является обязательным элементом систем автомати­зации проектирования (САПР). Графика в САПР исполь­зуется для подготовки технических чертежей проектируе­мых устройств (Рис. 8).

Рис. 8. Графика в САПР.

Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наибо­лее удачной компоновки деталей, прогнозировать последст­вия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плос­кие изображения (проекции, сечения) и пространственные, трехмерные, изображения.

Иллюстративная графика. Программные средства иллюстративной графики позволя­ют человеку использовать компьютер для произвольного ри­сования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, лине­ек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. По­этому они относятся к прикладному программному обеспече­нию общего назначения.

Простейшие программные средства иллюстративной гра­фики называются графическими редакторами.

Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая попу­лярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и мно­гое другое.

Графические пакеты для этих целей требуют больших ре­сурсов компьютера по быстродействию и памяти. Отличи­тельной особенностью этого класса графических пакетов яв­ляется возможность создания реалистических (очень близ­ких к естественным) изображений, а также «движущихся картинок» (рис. 9).

Для создания реалистических изображений в графиче­ских пакетах этой категории используется сложный матема­тический аппарат.

Рис. 9 Художественная графика.

Компьютерная анимация. Получение движущихся изображений на дисплее ЭВМ на­зывается компьютерной анимацией. Слово «анимация» означает «оживление».

В недавнем прошлом художники-мультипликаторы со­здавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной ани­мации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объ­екта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опира­ющимися на математическое описание данного типа движе­ния. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Фрактальная графика. Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа — фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие (Фрактус – состоящий из фрагментов).

Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.

Рис.10 Фрактальная фигура.

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.

Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.

Источник

Оцените статью
Разные способы