Удобные способы умножения натуральных чисел

Удобные способы умножения натуральных чисел

    Главная
  • Список секций
  • Математика
  • Способы умножения натуральных чисел

Способы умножения натуральных чисел

Автор работы награжден дипломом победителя III степени

Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберѐшь. Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В моей работе предпочтение отдано стихии чисел и действий с ними.

Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому важно показать не только то, что сам процесс выполнения действия может быть интересным, но и что, хорошо усвоив приѐмы быстрого счета, можно поспорить и с ЭВМ. За простым действием умножения скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали меня. Захотелось узнать эти и другие способы умножения, сравнить их с нашим сегодняшним действием умножения.

Актуальность данной темы заключается в том, что использование нестандартных приемов умножения усиливает интерес к математике и способствует развитию математических способностей учащихся.

Цель исследования: познакомиться с приемами умножения, создающими возможность проявить творчество и смекалку, позволяющими овладеть приемами быстрого счета.

Объектом исследования: алгоритмы счета.

Предметом исследования: процесс вычисления.

Гипотеза: Существуют способы умножения чисел, для которых достаточно наличие карандаша и бумаги.

В старину говорили: « Умножение – мое мученье». Значит, раньше было сложно и трудно умножать. Прост ли наш современный способ умножения? Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен опрос учащихся 5 и 6 классов.

— Нужно ли уметь выполнять арифметические действия с натуральными числами?

-Умеете ли вы выполнять действия с натуральными числами?

— Знаете ли вы другие способы выполнения арифметических действий?

— Хотели бы узнать?

Опрос показал, что современные школьники не знают других способов выполнения действий, так как редко обращаются к материалу, находящемуся за пределами школьной программы. В школе изучают таблицу умножения, а затем учат умножать числа в столбик. Но это не единственный способ умножения. На самом деле существует несколько десятков способов умножения многозначных чисел.

2 . Основная часть. Необычные способы умножения.

2.1. Немного истории.

Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами.

Известно много способов умножения натуральных чисел, многие из которых появились еще в древние времена. Так, Лука Пачиоли еще в XV веке в трактате об арифметике приводит 8 различных способов умножения.

Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления – приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

В книге В.Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».

И все эти приемы умножения – «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.

Давайте рассмотрим наиболее интересные и простые способы умножения.

2.2. Прием перекрестного умножения при действии с двузначными числами

Древние греки и индусы в старину называли прием перекрестного умножения «способом молнии» или «умножение крестиком».

Пример: 52 * 23 = 1173 5 1

Последовательно производим следующие действия:

1 х 3=3 это последняя цифра результата

5 х 3=15; 1 х 2=2; 15+2=17.

7 – предпоследняя цифра в ответе, единицу запоминаем.

Читайте также:  Способы обработки ран сообщение

5 х 2=10, 10+1=11 – это первые цифры в ответе.

Это всем известный Квадрат Пифагора, отражающий мировую систему счисления, состоящую из девяти цифр: от 1 до 9. Выражаясь современным языком – это девяти разрядная числовая матрица, в которой цифры, являющиеся основой для дальнейших вычислений любой сложности расположены в порядке возрастания. Квадрат Пифагора называют и Эннеадой, а тройку цифр — триада. Можно рассматривать тройки цифр расположенные по горизонтали (123, 456, 789) и по вертикали(147, 258, 369). Причем, записанные таким образом, тройки цифр начинают обозначать уже особые числа, подчиняющиеся законам математической пропорции и гармонии.

Вспомним главное правило древнеегипетской математики, в котором сказано, что умножение производится при помощи удвоения и сложения полученных результатов; то есть каждое удвоение есть сложение числа с самим собой. Поэтому интересно посмотреть на результат подобного удвоения цифр и чисел, но полученному современным методом складывания « в столбик», известному даже в начальных классах школы. Это будет напоминать египетскую систему счисления, по сути, с разницей в том, что все цифры либо числа записываются в один столбик (без указания того или иного действия в соседнем столбике — как у египтян).

Начнем с цифр, составляющих Квадрат Пифагора: от 1 – до 9.

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90

Цифра 1: обычный последовательный ряд цифр.

Цифра 9: левый столбик — четкий восходящий ряд («поток»).

правый столбик — четкий нисходящий ряд последовательных цифр. Условимся называть восходящим ряд, значения чисел в котором увеличиваются сверху вниз ; в нисходящем же – наоборот: уменьшаются значения чисел сверху вниз.

Цифра 2: в правом столбике повторяются четные цифры 2,4,6,8 («в периоде»).

Цифра 8: такой же повтор — только в обратном порядке- 8,6,4,2.

Цифры 4 и 6: четные цифры «в периоде» 4,8,2,6 и 6,2,8,4.

Цифра 5: подчиняется правилу сложения цифры 5- чередование 5 и 0.

Цифра 3: правый столбик — нисходящий ряд уже не цифр, а чисел, образующих тройки вертикальных рядов в квадрате Пифагора- 369, 258, 147. Причем, отсчет идет «из правого угла квадрата» или справа налево. Здесь также действует принятое выше правило восходящего — нисходящего ряда. Но восходящий ряд – это движение от тройки чисел 147 до тройки 369; нисходящий — от 369 до 147.

Цифра 7: восходящий ряд чисел 147,258,369 из «левого угла» или слева направо. Впрочем, все зависит от того, как изображена сама девятиразрядная числовая матрица — где поставить цифру 1.

2.4. Умножение на пальцах.

Древнерусский способ умножения на пальцах является одним из наиболее употребительных методов, которым успешно пользовались на протяжении многих столетий российские купцы. Они научились умножать на пальцах однозначные числа от 6 до 9. При этом достаточно было владеть начальными навыками пальцевого счета “единицами”, “парами”, “тройками”, “четверками”, “пятерками” и “десятками”. Пальцы рук здесь служили вспомогательным вычислительным устройством.

Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число (суммарное) вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках, а результаты складывались.

Умножим 7 на 8. Развернем руки ладонями к себе и коснемся безымянным пальцем (7) левой руки среднего пальца (8) правой.

Обратим внимание на пальцы рук, оказавшиеся выше соприкоснувшихся пальцев 7 и 8. На левой руке выше 7 оказались три пальца (средний, указательный и большой), на правой выше 8 — два пальца (указательный и большой).
Будем называть эти пальцы (три на левой руке и два на правой) верхними . Остальные пальцы (мизинец и безымянный на левой руке и мизинец, безымянный и средний на правой) назовем нижними . В этом случае (7 х 8) получается 5 верхних пальцев и 5 нижних.
Теперь найдем произведение 7 х 8. Для этого:
1) умножим количество нижних пальцев на 10, получим 5 х 10 = 50;
2) перемножим количества верхних пальцев на левой и правой руках, получим3 х 2 = 6;
3) сложим эти два числа. Получим окончательный ответ: 50 + 6 = 56.
Мы получили, что 7 х 8 = 56.

Читайте также:  Способ оплаты за жку

Например, умножим 6 на 8. В рассмотренном примере будет загнуто 4 и 2 пальца. Если сложить количества загнутых пальцев (1+3=4) и перемножить количества не загнутых (4•2=8), то получатся соответственно числа десятков и единиц искомого произведения 4 и 8. То есть 48 .

Способ интересен и помогает запомнить таблицу умножения, но ограничен, так как позволяет умножать только однозначные числа, и не исключает знание таблицы умножения до 5.

2.5. Индийский способ умножения.

Самый ценный вклад в сокровищницу математических знаний был совершен в Индии. Индусы предложили употребляемый нами способ записи чисел при помощи десяти знаков: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Основа этого способа заключается в идее, что одна и та же цифра обозначает единицы, десятки, сотни или тысячи, в зависимости от того, какое место эта цифра занимает. Занимаемое место, в случае отсутствия каких – нибудь разрядов, определяется нулями, приписываемыми к цифрам.

Индусы отлично считали. Они придумали очень простой способ умножения. Они умножение выполняли, начиная со старшего разряда, и записывали неполные произведения как раз над множимым, поразрядно. При этом сразу был виден старший разряд полного произведения и, кроме того, исключался пропуск какой-либо цифры. Знак умножения еще не был известен, поэтому между множителями они оставляли небольшое расстояние. Например, умножим их способом 623 на 7:

Источник

Удобные способы умножения натуральных чисел

Однажды мама показала мне интересное видео, в котором один профессор показывал метод умножения двузначных чисел. Так как мы еще не умножаем двузначные числа, мне было интересно посмотреть, как это происходит. Тем более, что многие дети не учат таблицу умножения и поэтому возникают трудности в вычислениях.

Чтобы привлечь внимание учащихся к математике и ответить на вопрос «Надо ли знать таблицу умножения?» я выбрал тему «Необычные способы умножения».

Гипотеза: Надо ли знать таблицу умножения современному ученику?

В нашем современном мире постоянное применение вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты. Знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла

В разное время разные народы владели разными способами умножения натуральных чисел. Но в настоящее время все народы применяют один способ умножения «столбиком». У меня возникли вопросы:

Почему люди отказались от старых способов умножения в пользу современного? Имеют ли забытые способы умножения право на существование в наше время?

Цель работы: выявить наиболее удобный способ умножения.

Найти необычные способы умножения;

Научиться их применять;

Провести эксперимент и найти самый удобный и быстрый способ.

II . Необычные способы умножения

2.1. Немного истории

Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.

Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления — приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

Читайте также:  Способ прокладки кабеля проколом

В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».

И все эти приемы умножения — «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.

Давайте рассмотрим наиболее интересные и простые способы умножения.

2.2. Умножение на пальцах.

Древнерусский способ умножения на пальцах является одним из наиболее употребительных методов, которым успешно пользовались на протяжении многих столетий российские купцы. Они научились умножать на пальцах однозначные числа от 6 до 9. При этом достаточно было владеть начальными навыками пальцевого счета “единицами”, “парами”, “тройками”, “четверками”, “пятерками” и “десятками”. Пальцы рук здесь служили вспомогательным вычислительным устройством.

Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число (суммарное) вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках, а результаты складывались.

Например, умножим 7 на 8. В рассмотренном примере будет загнуто 2 и 3 пальца. Если сложить количества загнутых пальцев (2+3=5) и перемножить количества не загнутых (2•3=6), то получатся соответственно числа десятков и единиц искомого произведения 56 . Так можно вычислять произведение любых однозначных чисел, больше 5.

2.3. Умножение на 9.

Умножение для числа 9 — 9·1, 9·2 . 9·10 — легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится «на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке).

Допустим, хотим умножить 9 на 6. Загибаем палец с номером, равным числу, на которое мы будем умножать девятку. В нашем примере нужно загнуть палец с номером 6. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа — количество единиц. Слева у нас 5 пальцев не загнуто, справа — 4 пальца. Таким образом, 9·6=54. Ниже на рисунке детально показан весь принцип «вычисления».

По ходу дела скажем, что в качестве «счетной машинки» не обязательно могут выступать пальцы рук. Возьмите, к примеру, 10 клеточек в тетради. Зачеркиваем 8-ю клеточку. Слева осталось 7 клеточек, справа — 2 клеточки. Значит 9·8=72. Все очень просто.

7 клеток 2 клетки.

2.4. Умножение чисел методом «ревность» или «решетка».

Данный способ носит романтическое название «ревность», или «решётчатое умножение».

Сначала рисуется прямоугольник, разделённый на квадраты, причём размеры сторон прямоугольника соответствуют числу десятичных знаков у множимого и множителя. Затем квадратные клетки, делятся по диагонали, и «…получается картинка, похожая на решётчатые ставни-жалюзи, — пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».

Умножим этим способом 347 на 29. Начертим таблицу, запишем над ней число 347, а справа число 29.

В каждую строчку запишем произведение цифр, стоящих над этой клеткой и справа от нее, при этом цифру десятков произведения напишем над косой чертой, а цифру единиц – под ней. Теперь складываем числа в каждой косой полосе, выполняя эту операцию, справа налево. Если сумма окажется меньше 10, то ее пишем под нижней цифрой полосы. Если же она окажется больше, чем 10, то пишем только цифру единиц суммы, а цифру десятков прибавляем к следующей сумме. В результате получаем искомое произведение 10063.

Источник

Оцените статью
Разные способы