Тригонометрические неравенства способы решения тригонометрических неравенств

Простейшие и сложные тригонометрические неравенства

Неравенства – это соотношения вида a › b, где a и b – есть выражения, содержащие как минимум одну переменную. Неравенства могут быть строгими – ‹, › и нестрогими – ≥, ≤.

Тригонометрические неравенства представляют собой выражения вида: F(x) › a, F(x) ‹ a, F(x) ≤ a, F(x) ≥ a, в которых F(x) представлено одной или несколькими тригонометрическими функциями.

Простейшие тригонометрические неравенства

Примером простейшего тригонометрического неравенства является: sin x ‹ 1/2. Решать подобные задачи принято графически, для этого разработаны два способа.

Способ 1 – Решение неравенств с помощью построения графика функции

Чтобы найти промежуток, удовлетворяющий условиям неравенство sin x ‹ 1/2, необходимо выполнить следующие действия:

  1. На координатной оси построить синусоиду y = sin x.
  2. На той же оси начертить график числового аргумента неравенства, т. е. прямую, проходящую через точку ½ ординаты ОY.
  3. Отметить точки пересечения двух графиков.
  4. Заштриховать отрезок являющийся, решением примера.

Когда в выражении присутствуют строгие знаки, точки пересечения не являются решениями. Так как наименьший положительный период синусоиды равен 2π, то запишем ответ следующим образом:

Если знаки выражения нестрогие, то интервал решений необходимо заключить в квадратные скобки – [ ]. Ответ задачи можно также записать в виде очередного неравенства:

Способ 2 – Решение тригонометрических неравенств с помощью единичной окружности

Подобные задачи легко решаются и с помощью тригонометрического круга. Алгоритм поиска ответов очень прост:

  1. Сначала стоит начертить единичную окружность.
  2. Затем нужно отметить значение аркфункции аргумента правой части неравенства на дуге круга.
  3. Нужно провести прямую проходящую через значение аркфункции параллельно оси абсциссы (ОХ).
  4. После останется только выделить дугу окружности, являющуюся множеством решений тригонометрического неравенства.
  5. Записать ответ в требуемой форме.

Разберем этапы решения на примере неравенства sin x › 1/2. На круге отмечены точки α и β – значения

Точки дуги, расположенные выше α и β, являются интервалом решения заданного неравенства.

Если нужно решить пример для cos, то дуга ответов будет располагаться симметрично оси OX, а не OY. Рассмотреть разницу между интервалами решений для sin и cos можно на схемах приведенных ниже по тексту.

Читайте также:  Для построения линии пересечения поверхностей способ вспомогательных секущих плоскостей

Графические решения для неравенств тангенса и котангенса будут отличаться и от синуса, и от косинуса. Это обусловлено свойствами функций.

Арктангенс и арккотангенс представляют собой касательные к тригонометрической окружности, а минимальный положительный период для обеих функций равняется π. Чтобы быстро и правильно пользоваться вторым способом, нужно запомнить на какой из оси откладываются значения sin, cos, tg и ctg.

Касательная тангенс проходит параллельно оси OY. Если отложить значение arctg a на единичном круге, то вторая требуемая точка будет расположено в диагональной четверти. Углы

являются точками разрыва для функции, так как график стремится к ним, но никогда не достигает.

В случае с котангенсом касательная проходит параллельно оси OX, а функция прерывается в точках π и 2π.

Сложные тригонометрические неравенства

Если аргумент функции неравенства представлен не просто переменной, а целым выражением содержащим неизвестную, то речь уже идет о сложном неравенстве. Ход и порядок его решения несколько отличаются от способов описанных выше. Допустим необходимо найти решение следующего неравенства:

Графическое решение предусматривает построение обычной синусоиды y = sin x по произвольно выбранным значениям x. Рассчитаем таблицу с координатами для опорных точек графика:

В результате должна получиться красивая кривая.

Для простоты поиска решения заменим сложный аргумент функции

Пересечение двух графиков позволяет определить область искомых значений, при которых выполняется условие неравенства.

Найденный отрезок является решением для переменной t:

Однако, цель задания найти все возможные варианты неизвестной x:

Решить двойное неравенство достаточно просто, нужно перенести π/3 в крайние части уравнения и произвести требуемые вычисления:

Ответ на задание будет выглядеть как интервал для строгого неравенства:

Подобные задачи потребует опыта и сноровки учащихся в обращении с тригонометрическими функциями. Чем больше тренировочных заданий будет решено в процессе подготовке, тем проще и быстрее школьник найдет ответ на вопрос ЕГЭ теста.

Источник

О тригонометрических неравенствах: понятие, типы и особенности решения

Что такое тригонометрические неравенства

Тригонометрические неравенства — неравенства, в которых переменные находятся только под знаком тригонометрической функции.

Тригонометрические функции обозначаются как:

При доказательстве тригонометрических неравенств применяют общие приемы доказательства алгебраических неравенств.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

При этом в тригонометрии спектр применяемых математических методов богаче.

К ним относятся:

  • метод от обратного;
  • аналитико-синтетический метод;
  • методы математического анализа;
  • метод математической индукции;
  • элементы геометрии;
  • векторная алгебра;
  • графический метод.

Виды тригонометрических неравенств

Неравенства в тригонометрии подразделяются на два вида:

По однородности они делятся на два типа:

В однородных неравенствах у всех слагаемых степень одинакова по сумме.

Читайте также:  Способы очистки от коллоидов

Примеры таких неравенств:

В неоднородных — степени слагаемых будут отличаться друг от друга.

Простейшие

Простейшие тригонометрические неравенства имеют вид:

sin х m, cos x m, tg x m, ctg >m; ctg Пример

\(sin 3x — sin x > 0; \)

\(cos x — 5x + 2 > 0.\)

Методы решения тригонометрических неравенств

Общие сведения по решению тригонометрических неравенств

При решении тригонометрических неравенств используют свойство монотонности тригонометрических функций и промежутки их знакопостоянства.

Монотонность характерна как для убывающих, так и для возрастающих функций. Она означает, что в определенном промежутке большему по значению аргумента будет соответствовать большее или меньшее значение функции в зависимости от возрастания или убывания функции, соответственно.

О промежутках знакопостоянства говорят, когда множеству значений аргумента соответствуют только положительные или только отрицательные значения функции.

Чтобы решить простейшее тригонометрическое неравенство, необходимо найти множество всех значений аргумента, которые обращают данное неравенство в верное числовое неравенство.

Важные моменты в решении простейших тригонометрических неравенств:

sin x = 0, если \(\mathrm x=\mathrm<πR>, \ R\in Z;\)

sin x = -1, если \(x=-\frac\pi R+2\pi R\,, \ R\in Z;\)

sin x = 1, если \(x=\frac\pi2+2\pi R, \ R\in Z;\)

sin x > 0, если \(2\pi R

для cos x:

cos x = 0, если \(x=\frac\pi2+\pi R,\ R\in Z;\)

cos x = -1, если \ \(x=\pi+2\pi R, \ R\in Z;\)

cos x = 1, если \(x=2\pi R, \ R\in Z;\)

cos x > 0, если \(2\pi R-\frac\pi2

cos x \(2\pi R+\frac\pi2

tg x > 0, если \(\pi R

tg x \(\pi R-\frac\pi2

тангенс не существует, если \(x=\frac\pi2+\pi R, \ R\in Z.\)

Нестандартные способы решения тригонометрических неравенств включают в себя несколько методик:

  1. Графический метод.
  2. Метод постановки.
  3. Метод интервалов.
  4. Метод секторов.
  5. Метод концентрических окружностей для систем тригонометрических неравенств.

Для решения простейших тригонометрических неравенств применяют графический способ решения и решение с помощью числовой окружности.

Решение тригонометрических неравенств с помощью единичной окружности

Решите неравенство: sin x > ½.

Построим единичную окружность. Построим на ней дуги AC и \(AC_1\) . Их синус должен быть равен ½.

Из окружности видно, что все дуги, начинающиеся в точке А и заканчивающиеся в любой внутренней точке дуги \(CBC_1\) , удовлетворяют данному неравенству.

Чтобы получить все решения данного неравенства, прибавим к концам этого промежутка 2πR.

Ответ: \(\frac\pi6+2\pi R

Решите неравенство: cos 3x > ½.

Обозначим 3х через α.

Неравенство примет вид:

Этому неравенству удовлетворяют все точки \[P_\alpha\] единичной окружности, абсциссы которых больше или равны -1/2.

На окружности видно, что эти точки дуги лежат на прямой \(х=-1/2\) или правее ее.

Выделенная на рисунке дуга представляет собой множество всех точек, удовлетворяющих данному неравенству. Концы этой дуги входят в искомое множество. Их абсциссы равны -1/2, значит, удовлетворяют неравенству.

Учитывая периодичность косинуса, запишем решения для неравенства

Читайте также:  Способы как забыть бывшего

\(-\frac<2\pi>3+2\pi R\leq\alpha\leq\frac<2\pi>3+2\pi R, \ R\in Z.\)

Вернемся снова к переменной х, получим искомый ответ:

Решите неравенство: tg 2x > 1.

Обозначим 2х через α.

Неравенство примет вид:

Построим окружность и проведем касательную к окружности в точке (1; 0). Эта линия является тангенсом.

Так как α является решением неравенства tg α ≥ 1, то ордината точки \(T_\alpha\) линии тангенсов tg α должна быть равна или больше 1. Луч АТ имеет все эти точки.

Точки \(P_\alpha\) окружности, соответствующие точкам \( P_\alpha\) , образуют дугу.

Для ее точек выполняется неравенство \(\frac\pi4\leq\alpha

Прибавим к этому промежутку период тангенса и получим решение неравенства \(T_\alpha\geq1:\)

Так как \(α=2х\) , получим ответ:

Графическое решение тригонометрических неравенств

Для решения простейших тригонометрических неравенств с помощью графического метода решения строят график тригонометрической функции (sin x, cos x и т. д.) и прямую у=а. Затем выделяют промежутки с помощью построенных графиков. Эти промежутки являются решением неравенства.

Решите неравенство: sin x > ½.

Построим графики функций \(y=sin\) \(x\) и \(y=1/2.\)

Из графика видно, что прямая у=1/2 пресекает синусоиду в бесконечном числе точек.

На нем выделены несколько значений аргументов, которые удовлетворяют данному неравенству: \(\frac\pi6, \frac<5\pi>6.\)

Учитывая периодичность синуса, запишем окончательный ответ:

\(\frac\pi6+2\pi R \(R\in Z.\)

Решите неравенство: tg x ≥ -1.

Построим графики функций \(y = tg\) \(x \) и \(y = -1.\)

Из графика видно, что одним из промежутков, который удовлетворяет неравенств, является:

Учтем периодичность тангенса и получим:

Решение тригонометрических неравенств методом интервалов

Решите неравенство: \(6\sin^2\left(x\right)-5\sin\left(x\right)+1\geq0.\)

Введем новую переменную:

Тогда данное неравенство можно записать в другом виде:

Это неравенство представляет собой квадратное уравнение с корнями:

\(y_1=\frac12 \ и \ y_2=\frac13.\)

Получим из данного трехчлена линейные множители, используя формулу:

Используем метод интервалов для его решения.

Объединим промежутки \(y\geq\frac12\) и \(y\leq\frac13.\)

Тогда получим, что

\(\sin\left(x\right)\leq\frac13\) и \(\sin\left(x\right)\geqslant\frac12.\) (2)

Теперь для решения полученных неравенств применим алгоритм решения по методу единичной окружности.

Решая неравенство (1), на построенной слева окружности видим, что ему удовлетворяют такие значения х:

\(-\pi-arc\sin\frac13\leq x\leq arc\sin\frac13\) . (3)

Для получения всех решений неравенства к полученному промежутку добавим \(2\pi R.\)

\(-\pi-arc\sin\;\frac13+2\pi R\leq x\leq arc\sin\;\frac13+2\pi R,\;R\in Z\) . (4)

Для решения неравенства (2) так же построим окружность и увидим, что ему удовлетворяют значения х:

\(\frac\pi6+2\pi R\leq x\leq\frac<5\pi>6+2\pi R,\;R\in Z.\) (5)

Значения х, удовлетворяющие неравенствам (4) и (5) являются решением данного неравенства.

Задача 2

Решите неравенство: \(\frac <15>

Введем новую переменную: \(у = cos x.\)

Неравенство примет вид:

После преобразований получим:

Используем метод интервалов.

Неравенство \(\cos\;x решения не имеет.

Так как \(-1\leqslant\cos\;x\leqslant\) , то неравенство \(\frac12 надо заменить другим неравенством:

Источник

Оцените статью
Разные способы