- Способы проверки решения арифметических задач и вычислений методическая разработка по математике на тему
- Скачать:
- Предварительный просмотр:
- Математика
- Проверка арифметических действий теми же действиями
- Проверка сложения
- Проверка вычитания
- Проверка умножения
- Проверка деления
- Математика. 2 класс
- Три сигнала от налоговиков, которые не стоит игнорировать
- «Сигналы» от налоговиков
- Уведомления для вызова налогоплательщика
- Информационные письма
- Комиссии по легализации налоговой базы
- Выездная налоговая проверка
Способы проверки решения арифметических задач и вычислений
методическая разработка по математике на тему
Для эффективности усвоения приёмов проверки решения задач и вычислений разработаны памятки, содержащие систему операций.
Скачать:
Вложение | Размер |
---|---|
sposoby_proverki_resheniya_zadach.doc | 95.5 КБ |
Предварительный просмотр:
Акимова Ольга Ивановна,
учитель ГБОУ школы №115 Выборгского района г. Санкт-Петербурга
Способы проверки решения арифметических задач и вычислений
Основное содержание начального курса математики составляют устные и письменные вычисления и решение арифметических задач. Умения вычислять и решать задачи имеют не только большое практическое значение, но и являются прекрасным средством углубления приобретённых детьми на уроках математики теоретических знаний, служат для развития творческого мышления учащихся, способствуют развитию у них сообразительности, внимания, гибкости и умственной самостоятельности.
При выполнении вычислений и решении задач школьники допускают большое количество ошибок, исправление которых часто бывает, затруднено не только и не столько непониманием учеником природы ошибок, сколько неумением их обнаружить.
Программа обучения математике в начальной школе предполагает знакомство с некоторыми видами проверки вычислений и арифметических задач, но проверка выполняется , если такое задание сформулировано в учебнике или данный вопрос в это время изучается специально. Систематическая проверка ,как правило, в школе не проводится. Решение задач и примеров заканчивается получением результата. Следствием этого является то, что дети не в состоянии проконтролировать свою деятельность, часто не замечают ошибок в ходе и результате решения.
Организуя проверку решения задачи, учитель должен помнить, что не все способы применимы к любой задаче. В методической литературе выделяются следующие способы проверки арифметических задач:
- Составление и решение обратной задачи
- Решение задачи другим способом
- Прикидка результата
Из перечисленных способов особое внимание уделяется составлению и решению обратной задачи. Этот приём достаточно универсален, так как составить обратную задачу можно к любой исходной. Лучше этот приём использовать, начиная со 2 класса, так как при составлении обратной задачи может получиться задача труднее, чем исходная.
Решение задачи другим способом — приём достаточно сложный, так как является творческим видом работы и не все учащиеся могут найти даже один способ решения задачи. Существуют приёмы, которые позволяют отыскать иной способ решения задачи: построение иной модели задачи, чем та, которая была использована; дополнение условия задачи сведениями, не влияющими на результат решения; представление практического разрешения ситуации, описанной в задаче. Эти приёмы представляются ученику в виде учебной задачи.
Самым элементарным способом проверки является прикидка – установление границ искомого числа. Предполагается вводить его уже в первом классе. Прикидка обычно проводится перед решением задачи, устанавливаются границы значений искомого числа. После получения ответа проверяют, удовлетворяет ли он выбранным границам. В случае несоответствия делают вывод о неправильности результата.
Применять этот способ можно как для простых, так и для составных задач. Данный способ является необходимой частью анализа задач в косвенной форме, в связи с тем, что еще до решения задачи нужно выяснить, какое число получится в ответе – больше или меньше данного.
Приёмы проверки решения арифметических задач легко переносятся на вычисления и выполняются с использованием тех же алгоритмов.
Умение проверять решение задач и вычисления способствует выработке потребности самоконтроля у младших школьников, оно не только порождает уверенность в правильности решения, но и позволяет глубже понять математическое содержание данных видов упражнений, осознать связи между этими упражнениями, формирует умение рассуждать, активизирует мыслительную деятельность детей.
Для эффективности усвоения приёмов проверки решения задач и вычислений созданы памятки, содержащие систему операций.
Памятка для проверки решения задачи способом составления и решения обратной задачи.
- Решить прямую задачу
- Подставить в текст задачи полученное число
- Выбрать из данных задачи новое неизвестное число
- Сформулировать новую задачу
- Решить её
- Сравнить полученное число с тем, которое было выбрано в качестве неизвестного
- Сделать вывод о правильности решения задачи
Памятка для проверки вычислений способом составления и решения обратного примера
- Реши исходный пример
- Подставь в пример найденное число
- Выбрать из данных примера новое неизвестное число
- Запиши новый пример
- Реши пример
- Сравнить полученное число с тем, которое было выбрано в качестве неизвестного
- Сделать вывод о правильности решения примера
Памятка для проверки решения задачи способом прикидки результата
- Прочитай задачу
- Выдели данное и искомое
- Подумай, с каким из чисел можно сравнить искомое
- Подумай, какое число должно получиться в ответе, больше или меньше, чем данные
- Реши задачу
- Сравни полученный ответ с данным задачи
- Сделать вывод о правильности решения задачи
Памятка для проверки вычислений способом прикидки результата
- Прочитай исходный пример
- Выдели данные и искомое
- Подумай, с каким из чисел можно сравнить искомое
- Подумай, какое число должно получиться в ответе, больше или меньше, чем данные
- Реши пример
- Сравни полученный ответ с данным примера
- Сделать вывод о правильности вычисления
Источник
Математика
Чтобы убедиться, что какое-нибудь арифметическое действие сделано без ошибки, его проверяют.
Проверкой называют совокупность арифметических приемов с целью убедиться, что данное арифметическое действие исполнено верно. Проверка также состоит из арифметических действий, выполненных в другом порядке.
Самый простой способ убедиться, что действие выполнено верно, состоит, конечно, в том, чтобы повторить его снова. Однако, замечено, что уверенность наша увеличивается, если мы убедимся другим путем в верности какого-нибудь результата, поэтому проверяют арифметические действия иначе.
Проверка основана на главных свойствах самих арифметических действий и на зависимости, существующей между данными и искомыми числами.
Основываясь на главных свойствах самих действий, мы можем каждое действие проверять тем же действием, только выполненным в другом порядке. Таким образом, сложение проверяется сложением, вычитание — вычитанием и т. д.
Проверка арифметических действий теми же действиями
Проверка сложения
Сумма не изменяется от перемены порядка слагаемых, следовательно, чтобы проверить сложение, нужно сложить слагаемые в другом порядке; если получится та же самая сумма, сложение сделано верно.
Обычно при проверке складываются слагаемые в обратном порядке, то есть снизу вверх.
Проверка вычитания
Вычитаемое равно уменьшаемому без разности, следовательно, чтобы проверить вычитание, нужно из уменьшаемого вычесть разность; если в остатке получится вычитаемое, вычитание сделано верно.
Проверка умножения
Произведение не изменяется от перемены порядка множителей, следовательно, чтобы проверить умножение, нужно переменить порядок множителей и снова выполнить умножение; если получим то же произведение, умножение выполнено верно.
Проверка деления
При делении нацело делитель равен делимому, разделенному на частное, следовательно, чтобы проверить деление, в случае деления нацело, нужно делимое разделить на частное; если в частном получится делитель, деление сделано верно.
Источник
Математика. 2 класс
Конспект урока
Математика, 2 класс. Урок №27
Проверка сложения. Проверка вычитания.
Перечень вопросов, рассматриваемых в теме:
— Что такое обратные математические действия?
— Как проверить сложение?
— Как проверить вычитание?
Глоссарий по теме:
Сложение – это объединение объектов в одно целое. Результатом сложения чисел является число, называемое суммой чисел (слагаемых).
Вычитание – это такое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее – вычитаемым, результат вычитания – разностью.
Обратные действия – действия, приводящие к прежнему, исходному состоянию.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
- Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др. – 8-е изд. – М.: Просвещение, 2017. – с.84-86.
- Математика. Рабочая тетрадь. 2 класс. Учебное пособие для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова – 6-е изд., дораб. – М.: Просвещение, 2016. – с.60.
- Математика: переходим в 3-й класс. Учебное пособие для общеобразовательных организаций. А. В. Светин – М.: Просвещение: Уч. Лит, 2017. – с.40.
Теоретический материал для самостоятельного изучения
Используя числа 7, 5, 12 составим все возможные равенства.
7 + 5 = 12 12 – 5 = 7
12 – 7 = 5 5 + 7 = 12
Назовём компоненты и результат действия сложения.
Слагаемое + слагаемое = сумма
Назовём компоненты и результат действия вычитания.
Уменьшаемое – вычитаемое = разность
Действия сложение и вычитание связаны друг с другом, являются взаимно обратными действиями.
Как проверить, верно ли выполнено сложение. Воспользуемся знанием того, как связаны слагаемые и сумма. Если из суммы двух слагаемых вычесть одно из них, то получится другое слагаемое. Это позволяет сложение проверить вычитанием.
Например, надо проверить, верно ли вычислили сумму чисел 28 и 5. Для этого из суммы 33 вычтем одно из слагаемых. Например, 5. Должно получиться другое слагаемое. Получилось 28. Значит, сумма чисел 28 и 5 найдена правильно. Можно вычесть из суммы другое слагаемое.
Сумма чисел 36 и 9 найдена неверно, т.к. после вычитания из суммы 47 слагаемого 9, другое слагаемое, 36 не получается.
Вычислим ещё раз сумму чисел 36 и 9 и проверим результат.
36 – первое слагаемое
Сформулируем правило проверки сложения: «Для проверки сложения надо из значения суммы вычесть одно из слагаемых. Если в результате вычитания получается другое слагаемое, значит, сложение выполнено верно».
Как проверить вычитание? Воспользуемся знанием того, как связаны между собой уменьшаемое, вычитаемое, разность. Если к разности прибавить вычитаемое, то получится уменьшаемое. Значит, вычитание можно проверить сложением.
Вычислим разность чисел 48 и 30. Она равна 18. Проверим вычитание сложением. К разности 18 прибавим вычитаемое 30, получим 48. Это уменьшаемое.
Если из уменьшаемого вычесть разность, то получится вычитаемое.
Значит, вычитание можно проверить и вычитанием. Рассмотрим это на примере.
Из уменьшаемого 48 вычтем разность 18, получим 30, т.е. вычитаемое. Значит, разность чисел 48 и 30 вычислена верно.
Сформулируем правила проверки вычитания: «Для проверки вычитания, надо к значению разности прибавить вычитаемое. Если в результате сложения получается уменьшаемое, значит, вычитание выполнено верно», или «Для проверки вычитания, надо из уменьшаемого вычесть разность. Если в результате получается вычитаемое, значит, вычитание выполнено верно».
Вывод: Сложение и вычитание – это обратные действия. Для проверки сложения надо из значения суммы вычесть одно из слагаемых. Если в результате вычитания получается другое слагаемое, значит, сложение выполнено верно. Для того, чтобы выполнить проверку вычитания, надо к значению разности прибавить вычитаемое. Если в результате сложения получается уменьшаемое, значит, вычитание выполнено верно.
1. Найдите значение первого выражения в каждой рамке, а затем выполни проверку полученного результата двумя способами.
Источник
Три сигнала от налоговиков, которые не стоит игнорировать
Основные усилия налоговых органов сегодня сосредоточены на улучшении работы контрольно-аналитических отделов и отделов предпроверочного анализа. Чтобы побудить налогоплательщика самостоятельно уточнить обязательства и доплатить налоги в бюджет. Есть три основных метода.
«Сигналы» от налоговиков
Уведомления для вызова налогоплательщика
Кроме того, в таких уведомлениях налоговики могут:
- дать описание выявленных нарушений;
- потребовать предоставить письменные пояснения и документы;
- предложить самостоятельно оценить риски, подать уточненную налоговую декларацию и доплатить налог.
Игнорировать такие уведомления не стоит, потому что:
- это сигнал о проблеме, которую выявила налоговая;
- как минимум, «игнор» может стать причиной для административного штрафа;
- а за «хроническую» неявку в налоговую можно заработать назначение выездной проверки.
Информационные письма
Налоговики в таких письмах могут:
- перечислять подозрительных контрагентов и делать вывод, что сделки с ними налогоплательщик заключал для получения необоснованной налоговой выгоды;
- предлагать добровольно уточнить налоговые обязательства с этими контрагентами и доплатить налоги в бюджет;
- указывать на такие нарушения, как схемы, связанные с дроблением бизнеса.
На информационные письма нужно отвечать.
Вот основные моменты, которые нужно учесть:
- аргументируйте свою позицию;
- анализируйте взаимоотношения со спорными контрагентами;
- приводите доказательства реальности сделок.
Но и на основании только информационного письма не нужно сразу же уточнять налоговые обязательства и уплачивать налоги. Так вы продемонстрируете слабость своей позиции и привлечете дополнительное внимание налоговиков.
Комиссии по легализации налоговой базы
Поводом для их проведения становятся данные из автоматизированной системы контроля (АСК НДС-2). Например:
- о простых (прямых) или сложных налоговых разрывах. Вероятность попасть под проверку с прямым разрывом, который говорит о неуплате НДС вашим прямым контрагентом, высока;
- о доле вычетов по НДС у ваших поставщиков. Чем выше процент вычетов, тем выше риск неуплаты НДС и тем больше вопросов у налоговиков.
Комиссии, так же, как уведомления и информационные письма, игнорировать нельзя. Это возможность:
- понять, насколько сильна позиция налоговой. Исходя из этого, переходите к другим действиям;
- убедить налоговиков в своей точке зрения и не допустить назначения выездной налоговой проверки;
- «поторговаться» с налоговиками: например, вы соглашаетесь частично уточнить обязательства по одному или некоторым поставщикам, а взамен с вас снимают претензии по остальным.
Выездная налоговая проверка
Как правило, у налогоплательщика до назначения ВНП достаточно времени, чтобы оценить ситуацию, аргументы налоговой и доказательства для противопоставления. Возможность для диалога с налоговиками точно есть.
- выездные налоговые проверки занимают много времени — в среднем 8-12 месяцев, плюс нужно закладывать время на оспаривание результатов проверки в судебном порядке;
- они ресурсозатратны — инспектор не может эффективно проводить более двух-трех выездных проверок одновременно;
- они не позволяют достичь быстрого результата по налоговым сборам, что ухудшает годовые показатели эффективности работы налоговиков.
Налоговикам еще важно:
- не пропустить срок для назначения выездной налоговой проверки;
Она может быть проведена только за последние три года, не считая года назначения. Направление уведомлений и писем, представление пояснений и документов, работа комиссий — всё это требует времени. И налоговая рискует просто не успеть переработать информацию по всем налогоплательщикам и своевременно принять решение о назначении выездной налоговой проверки;
- правильно рассчитать сумму предполагаемым доначислений.
Она не должна быть меньше 1/8 от средних доначислений по итогам комплексных проверок за соответствующий год. По мелким суммам инспекция выездную проверку назначать не будет.
Источник