Три основных способа получения стали

Сталь. Способы получения стали: конверторный, мартеновский и электроплавка.

Основным сырьем для получения стали служат передельный чугун, лом черных металлов и отходы производства.

Существует несколько способов получения стали: конверторный, мартеновский и электроплавка.

Конверторный способ основан на продувке сжатым воздухом расплавленного чугуна. При продувке кислород воздуха вступает в реакцию с примесями чугуна и окисляет их, в результате чего получается сталь. Для конверторного способа используют жидкий чугун, полученный в доменных печах и выдержанный в специальных металлоприемниках (миксерах).

Достоинствами конверторного способа являются: высокая производительность агрегатов, компактность оборудования и т. д.

К недостаткам этого способа относятся невозможность переработки большого количества стального и железного лома, а также передел чугунов только определенного химического состава.

Марки конверторной стали обозначают начальными буквами Б и Т, что значит бессемеровская и томасовская сталь.

Мартеновский способ вызван к жизни необходимостью перерабатывать стальной лом и отходы производства. Требовалось создать печь, в которой температура была бы настолько высокой, чтобы можно было плавить сталь и железо. Получение высокой температуры в мартеновской печи дало возможность не только использовать промышленные отходы в качестве шихтовых материалов, но и получать стали с весьма разнообразными свойствами. Мартеновская сталь поступает в виде листовой и сортовой, рельсов, отливок, заготовок для ковки и штамповки.

Плавка стали в электропечах дает возможность получать высококачественные стали. Сущность процесса заключается в очищении стали от шлаков и примесей в виде серы и фосфора.

Сера и фосфор в стали являются вредными примесями. Сера снижает литейные свойства, препятствует выходу газов из жидкой стали, вызывает ломкость. Фосфор снижает пластичность и вызывает хладноломкость (хрупкость) стали. Кремний повышает упругость и вязкость стали, марганец повышает износоустойчивость.

По химическому составу стали делят на углеродистые и легированные. Углеродистые стали, кроме углерода, содержат до 0,35% кремния, 0,8% марганца, 0,06% серы, 0,07% фосфора. Легированными называют такие стали, в состав которых специально введены легирующие элементы (хром, никель, вольфрам, ванадий, молибден, кобальт и др.) для сообщения стали требуемых свойств.

По назначению стали делятся на конструкционные, инструментальные и стали с особыми физическими свойствами.

По способу выплавки различают сталь обыкновенного качества, качественную и высококачественную.

Углеродистые стали обыкновенного качества содержат до 0,65-0,70% углерода и обозначаются буквами Ст и цифрой, которая является условным номером стали, например: Ст 2, Ст 3 и т. д. Чем больше номер стали, тем больше в ней содержится углерода и тем она прочнее и тверже.

Качественные углеродистые стали обозначают только цифрой, указывающей среднее содержание углерода в сотых долях процента. Например, в стали марки 15 содержится 0,15% углерода, в стали марки 20,-0,20% углерода.

Углеродистые инструментальные стали содержат от 0,65 до 1,35% углерода. Они более прочные, твердые, но менее вязкие.

Углеродистые инструментальные стали делятся на две группы: качественные и высококачественные.

Углеродистые инструментальные качественные стали обозначают буквой У и цифрой, указывающей на среднее содержание углерода в десятых долях процента. Например, в стали марки У8 содержится 0,8% углерода, а стали марки У13-1,3% углерода.

В марке углеродистой инструментальной высококачественной стали ставят букву А, например У9А, У13А.

Легированные стали обозначают буквами и цифрами. Первые две цифры обозначают среднее содержание углерода в сотых долях процента, следующие за ними буквы русского алфавита указывают на легирующие элементы, входящие в состав данной стали.

Легирующие элементы обозначают следующими буквами: X — хром, Н — никель, Д — медь, Г -марганец, С — кремний, В — вольфрам, К — кобальт, П — фосфор, Т — титан, Ф — ванадий, М -молибден, Ю — алюминий.

Если легирующего элемента содержится меньше 1%, то цифра после буквы не ставится. Например, марка стали 12ХН3, в составе которой находится 0,12% углерода, около 1% хрома и 3% никеля.

Если в конце марки стоит буква А, то это значит, что сталь относится к группе высококачественных, содержащих минимальное количество вредных примесей — серы и фосфора.

Высоколегированные стали с особыми свойствами выделены в отдельные группы и обозначаются буквой в начале марки, например: Ж -хромистые нержавеющие, Я — хромоникелевые нержавеющие, Р — быстрорежущие, Ш — шарикоподшипниковые, Е — магнитные. Так, марка ШХ15 обозначает хромистую шарикоподшипниковую сталь.

Источник

Способы производства стали

Технологический процесс производства углеродистой стали можно разделить на два этапа. Сначала из руды выплавляется чугун, который на следующем этапе перерабатывается в сталь. При сокращении в расплавленном чугуне вкраплений углерода и иных примесей, которые в процессе плавления сгорают или отделяются в форме шлака. В качестве исходного сырья для изготовления стали используется чугун, металлолом, железные руды, также в расплавленный металл могут быть добавлены флюсы и ферросплавы. Существуют три принципиально отличающихся технологии выпуска: электрическое плавление, конвертерный метод и плавка в мартеновских печах, последний способ на сегодняшний день считается наиболее эффективным и распространенным, а производимая сталь по своему качеству выше, чем при конверторной плавке.

Читайте также:  Разработка грунта механизированным способом экскаватор

Мартеновский способ.

Масса загрузки мартеновских печей доходит до тысячи тонн, внутреннее пространство выполняется в виде камеры, вытянутой по горизонтальной оси и обкладывается специальным выдерживающим высокую температуру кирпичом. В верхнем отделении проложены каналы, связывающие камеру с теплообменными устройствами (регенераторами). Нижняя часть конструкции, имеет форму ванны и называется подом. Для усиления эффекта в регенераторах производится подогрев газа. В мартеновской печи плавится твердый или жидкий чугун с добавлением железной руды или стального металлолома. Углерод сгорает под воздействием высокой температуры, окисляющиеся под воздействием кислородного дутья примеси преобразуются в шлак и удаляются с поверхности расплавленного металла, сера удаляется при помощи содержащего известь флюса. За время плавления, занимающее от четырех до восьми часов, имеется возможность добавления в состав металла дополнительных компонентов, для получения на выходе легированной стали. В процессе плавления производится отбор образцов металла для химического анализа, при получении желаемых параметров расплавленная сталь выпускается в ковш, откуда разливается формам. Из стали произведенной по этому методу производят монорельсовые и подкрановые балки, фермы мостов и цеховых перекрытий, железнодорожные рельсы и арматуру.

Конверторный способ.

Печь конвертерная представляет вращающийся относительно горизонтальной оси стальной футерованный корпус грушевидной формы. При помощи ковша внутренняя часть конвертера наполняется расплавленным чугуном, через отверстия в корпусе под давлением нагнетается воздушно кислородная смесь образуя в сплаве закись железа, взаимодействующую с нежелательными в сплаве элементами, преобразовывает их в шлак или выгорающие оксиды. Метод считается экономичным и отличается высокой производительностью, занимает от пятнадцати до тридцати минут, емкость конвертерных печей достигает до шестисот тонн, полученный металл используется для производства стальных листов, балок, швеллеров, катанки и проволоки.

Электроплавка.

Электроплавильные дуговые или индукционные печи служат для получения сталей высокого качества, в печь загружают руду, скрап или стальной сплав после конвертера или из мартеновской печи, в процессе добавляются легирующие металлы. Для нагрева используется электрическая дуга между расплавом и специальными электродами. Выплавка по этой технологии позволяет получать сталь очень хорошего качества, но имеет высокую себестоимость и низкую производительность, как правило, применяются печи до двухсот тонн. В связи с этим часто применяются разные типы печей, сначала сплав готовят в конвертерной печи или мартене, а затем подается в электропечь, где доводится до более высокого качественного уровня.

Уважаемые партнеры, клиенты, заказчики. Для оперативной обработки вашей заявки указывайте в заказе каким образом необходимо подготовить металл к отгрузке. Нужно ли порезать его для транспортировки, на какую длину? Если заказываете доставку нашими силами, укажите по какому адресу и в какой город, какой транспортной компанией или каким отдельным видом транспорта необходимо произвести отправку приобретаемого вами металла.

Источник

Особенности производства стали

Сталь – это прочный материал и основной конструкционный материал для машиностроения. Он представляет сплав железа с углеродом, содержание которого в структуре составляет 0,01–2,14%. В состав также входят в незначительных количествах кремний, марганец и сера. Этот материал обладает исключительными механическими свойствами: твердостью и ковкостью, благодаря им он считается основным конструкционным материалом в машиностроении. Трудно представить, что могло бы заменить материал. Но активное развитие производство стали и других металлов. Из стали изготавливаются самые разнообразные изделия – от канцелярских скрепок до станин многотонных прессов и обшивки корпусов морских судов.

Процесс производства

Производится сталь плавкой. Исходным сырьем служат чугун, лом самой стали или чугуна, окатыши, флюсы и ферросплавы.

Сам чугун по природе – недостаточно твердый и хрупкий материал, поэтому имеет ограниченное применение.

Однако, он незаменим в качестве сырья для получения стали. Суть плавки состоит, в случае применения передельного чугуна, в снижении процентного содержания углерода в нем до требуемого уровня.

Выводятся не предусмотренные в конечной рецептуре примеси. Традиционный состав шихты представляет 55% чугуна и 45% стального лома (скрапа). Существует также рудный процесс, когда к компонентам добавляется рудный материал или скрап-процесс для переработки отходов машиностроительного производства.

Чтобы в процессе плавки примеси и углерод легче выводился из состава компонентов, они переводятся в газы и шлак. В первую очередь при взаимодействии чугуна с кислородом железо окисляется, образуя закись железа FeO.

Одновременно окисляются C, Si, Mn и P, при этом происходит отдача кислорода оксидом железа химически активным примесям. К массе шихты добавляют флюс для лучшего растворения металла: известняк или известь, боксит. В качестве топлива используют каменноугольную пыль, жидкий мазут, природный или коксовый газ.

Особенности процесса

Процесс производства стали происходит последовательно в три этапа.

Первый этап – расплавление породы. На этапе его проведения формируется расплав в ванне и окисляется металл, отдавая одновременно кислород кремнию, фосфору и марганцу.

Одна и главных задач этого этапа – удаление фосфора. Для ее осуществления требуется сравнительно невысокая температура и присутствие в достаточном количестве FeO. При взаимодействии ингредиентов фосфорный ангидрид образует с оксидом железа нестойкое соединение (FeO)3 + P2O5.

Читайте также:  Зараженных грызунов применяют при каком способе

Присутствие в шлаке более стойкого основания СаО вызывает замещение FeO. В результате оно связывает фосфорный ангидрит в другое соединение (CaO)4 х P2O5 + 4 Fe, чего и требовалось добиться.

Чистый Fe высвободился в расплаве, а фосфор образовал шлак, который удаляется с зеркала металла и утилизируется за ненадобностью. Поскольку фосфорный ангидрид преобразует состав шлака, процесс должен идти непрерывно.

Поэтому FeO должен непрерывно пополняться за счет загрузки новых партий железной руды и окалины, наводящих в расплаве железистый шлак.

Особенности второго этапа

Технология производства стали на втором этапе называется кипением стали. Основное назначение заключается в процентном снижении содержания углерода за счет окисления. FeO + C = CO + Fe.

Реакция окисления происходит более интенсивно при кипении и сопровождается поглощением тепла. Поэтому необходимо создавать постоянный приток тепла в ванну, а также для выравнивания температуры в расплаве.

При такой реакции окисления интенсивно выделяется газ оксида углерода CO, что вызывает бурное кипение в жидком агрегатном состоянии, по этой причине процесс называют кипением. Чтобы излишки углерода интенсивнее преобразовывались в окись, производство качественной стали предусматривает вдувание чистого кислорода и добавление в расплавленную структуру окалины. Поэтому таким важным является качество сырья для производства стали. Все исходные материалы проходят щепетильную проверку.

Немаловажным на этом этапе является вывод серы, благодаря чему повышается качество конечной стали. Используемая в компонентах сера, присутствует не в прямом виде, а в форме сульфида железа FeS.

При высоких температурах компонент также взаимодействует с оксидом СаО, образуя сульфид кальция CaS, который растворяется в шлаке, не соединяясь с железом. Это позволяет беспрепятственно выводить сульфид за пределы ванны.

Конвертерное производство стали

Раскисление

Третий этап – раскисление металла. После добавления кислорода (на предыдущем этапе) требуется снизить его содержание в чистой стали. Использованием О2 удалось добиться окисления примесей, но его остаточное присутствие в конечном продукте снижает качественные характеристики металла. Требуется удалить или преобразовать окислы FeO, связав кислород с другими металлами.

Для этого существуют два метода раскисления:

При диффузионном методе в расплавленный состав вводят добавки: алюминий, ферромарганец и ферросилиций. Они восстанавливают оксид железа и переводит в шлак. В шлаке оксид распадается и высвобождает чистое железо, которое поступает в расплав. Второй высвободившийся элемент – кислород улетучивается в окружающую среду.

Осаждающий метод предусматривает введение добавок, имеющих большее сродство с кислородом, чем Fe. Происходит замещение этими веществами железа в окисле. Они, как менее плотные, всплывают и выводятся вместе со шлаком.

Процесс раскисления продолжается при затвердевании слитка, в кристаллической структуре которого оксид железа и углерод взаимодействуют. В результате чего вместе с пузырьками азота, водорода он выводится.

Чем больше при раскислении выводится включений различных металлов, тем выше ковкость получаемой стали. Для проверки раскаленный кусок металла подвергают ковке, на нем не должны образовываться трещины. Такая проверка пробы говорит о правильном проведении процесса раскисления.

В зависимости от степени раскисления специалисты могут получить:

  • спокойную сталь полного раскисления;
  • кипящую раскисленную не полностью сталь, когда процесс выведения пузырьков угарного газа СО продолжается в ковше и изложнице.

Для получения легированных сталей с добавками некоторых металлов в расплавленный металл добавляются ферросплавы или чистые металлы. Если они не окисляются (Ni, Co, Mo), то такие добавки могут вводиться на любом этапе плавки. Более чувствительные к окислению металлы Si, Mn, Cr, Ti добавляют в ковш или, что обычно и происходит, в форму для отливки металла.

Существуют основные способы получения стали в сталеплавлении.

Мартеновский способ

Этот способ применяется для производства сталей высокого качества, применяемых в особо ответственных деталях машинах и точных механизмах.

В свое время он заменил трудоемкие и малопроизводительные тигельную и пулдинговую плавки, применявшиеся ранее.

Емкость загрузки одной отражательной печи, используемой при этом методе, достигает 500 тонн. Особенностью мартеновского способа является возможность переплавки не только передельного чугуна, но и металлургических отходов, металлического лома.

Температура нагрева жидкой стали достигает 2 тыс. градусов. Этот результат достигается специальной конструкцией мартеновской печи:

  • применением дополнительного тепла регенераторов, получаемого сжиганием коксовального или доменного газа в струе горячего воздуха;
  • отражения от свода закачиваемого газа в результате сгорание топлива в нем происходит над ванной с металлом, что способствует быстрому нагреву содержимого;
  • применением реверсирования нагревающего потока.

Мартеновская печь состоит из следующих элементов:

  • рабочего пространства с огнеупорной футеровкой стенок и завалочными окнами;
  • подины (основания) из магнезитового кирпича;
  • свода печи;
  • головки печи;
  • шлаковика для выведения пыли;
  • регенератора с перекидными клапанами.

Процесс плавки занимает от 4 до 12 часов. С целью ускорения процесса плавки объем закачиваемого кислорода превышает потребности, что повышает производительность плавки на 20–30%.

Конвертерный метод

В конверторах выплавляют сорта стали для производства автомобильного листа, инструментальной стали сварных конструкций и других стальных заготовок. По качеству они уступают мартеновскими применяются для изготовления менее ответственных изделий.

Читайте также:  Способы решения философских споров

В них содержится больше примесей, чем при мартеновском изготовлении. Благодаря высокому объему загрузки одной печи до 900 тонн, способ считается самым производительным, поэтому получил широкое распространение.

Производство стали и другого вида металла этим методом основано на продувке жидкого чугуна воздухом или кислородом под давлением 0,3–0,35 МПа, при этом металл разогревается до 1600 градусов. Плавка скоротечна и длится до 20 минут. За это время происходит окисление углерода, кремния и марганца, содержащихся в сырье, которые извлекаются из ванны с расплавом шлака.

Конвертер представляет сосуд ретортообразной (грушевидной) формы, состоящий из стальных листов с футеровкой изнутри. Для заливки чугуна и выпуска готовой стали используется одно отверстие, в него также загружается чугун и скрап.

Рождение стали

Особенности процесса

Вместе с ними загружаются шлакообразующие вещества: известь и бокситы. Корпус охвачен опорным кольцом, прикрепленным к поворотным цапфам. С их помощью сосуд наклоняется и через это отверстие – летку выливается готовая сталь. Нижняя продувка осуществляется через сквозные отверстия (фурмы), сделанные в днище печи.

Исторически повелось, что используемый везде способ называется томасовским, бессемеровским. В прошлом веке преобладающим стал мартеновский процесс. Нагрев регенератора осуществляется продувкой печных газов, после чего он нагревается холодный воздух, поступающий на расплав.

В современных конструкциях чаще применяют верхний способ, при котором продувка на огромной скорости осуществляется через опускаемые к поверхности металла сопла. В России преимущественно используется именно верхняя продувка печей.

Находясь под струей воздуха, чугун интенсивно окисляется в зоне контакта. Поскольку его концентрация значительно больше других примесей, преимущественно образуется оксид железа. Но он растворяется в шлаке. Поэтому металл обогащается выделяемым кислородом.

Окисляются C, Cr и Mn, снижая процентное содержание в структуре металла. Окисление сопровождается выделением тепла. Благодаря присутствию шлаков СаО и FeO до разогрева происходит выведение фосфора в самом начале продувки.

Шлак с ним сливается и наводится новый. Производство стали сопровождается экспресс-анализами и контролем текущих изменений приборами контроля, вмонтированных в печь. Содержание фосфора в чугуне не должно превышать 0,075%.

Кислородно-конвертерный способ получения стали

Производство стали сегодня осуществляется в основном этим способом. На долю кислородно-конверторного производства совсем недавно приходилось до 60% мирового производства стали.

Однако, этот процент снижается в связи с появлением электродуговых печей (ЭДП). Продувка печей осуществляется чистым кислородом (99,5%) под высоким давлением.

Продукт кислородно-конвертерной печи представляет сталь с заданными химическими свойствами. Она поступает в машину непрерывного литья заготовок (МНЛЗ), где материал застывает в форме блюма или плиты. Для получения определенных жестких параметров металл подвергается вторичной переработке.

Электросталеплавильный способ

Производство стали электрической плавкой обладает рядом неоспоримых преимуществ. Этот способ считается основным при выплавке высококачественных легированных сталей.

Достигаемая при этом высокая температура позволяет выплавлять стали, содержащие тугоплавкие металлы:

Высокое качество достигается практическим отсутствием в сталях фосфора, серы и кислорода. Этот способ также применяется для производства широкой номенклатуры строительных сталей.

Выделение тепла не связано с потреблением окислителя, а происходит в результате преобразования электрической энергии в тепловую. Она выделяется при прохождении электрической дуги или наведения вихревых токов. В зависимости от принципа работы печи подразделяются на электродуговые и индукционные.

Электродуговая печь способна принять одновременно от 3,5 до 270 тонн сырья:

  • жидкой стали из конвертеров;
  • скрапа;
  • железной руды.

Она имеет несколько электродов из графитосодержащего материала, к которым подводится электрическое напряжение. Время плавки составляет до 1,5 часа, при этом температура дуги достигает 6 тыс. градусов.

Особенности электроиндукционных печей

В электроиндукционных печах сталь выплавляют в небольших по объему (4,5–60 тонн) емкостях, именуемых огнеупорными тиглями. Вокруг тигля располагается индуктор, состоящий из большого количества витков провода.

При прохождении переменного тока внутри индуцируются вихревые токи большой силы, вызывающее плавление содержимого тигля. Электромагнитные силы одновременно перемешивают расплав стали. Продолжительность плавки в таких печах не превышает 45 мин.

Электросталеплавильный способ производит мало дыма, пыли и меньше излучает световой энергии. Однако, высокая стоимость электрооборудования при малой вместительности ограничивает применение этого способа.

Помимо рассмотренных вариантов, существуют не только основные способы производства стали. В современном сталеплавлении используется плавка в вакуумных индукционных печах и обогащение процентного содержания железа в окатышах плазменно-дуговым переплавом.

Виды получаемых сталей по химическому составу

Производимая этими методами сталь делится, в зависимости от химического состава, на две большие группы:

Процентное содержание элементов в углеродистой стали:

Наименование Fe С Si Mn S P
Содержание в процентах до 99,0 0,05–2,0 0,15–0,35 0,3–0,8 до 0,06 до 0,07

В углеродистых сталях прочность недостаточно сочетается с пластичностью. Недостаток устраняется введением добавок других металлов, такая сталь называется легированной.

Согласно ГОСТ 5200 выделяют три группы легированных сталей с допустимым содержанием примесей:

  • низколегированная не более 2,5%;
  • среднелегированная в диапазоне 2,5–10%;
  • высоколегированная свыше 10%.

С каждым годом способы плавки усовершенствуются благодаря вводу в строй нового высокотехнологичного оборудования. Это позволяет получать в сталелитейной промышленности высококачественные стали с оптимальным содержанием добавок и металлов.

Видео по теме: Производство чугуна и стали

Источник

Оцените статью
Разные способы