- Схемы подключения трансформаторов тока для электросчетчиков, как правильно установить
- Общие требования
- Принцип работы и назначение измерительного трансформатора
- Схемы подключения трехфазного счетчика электроэнергии
- Полукосвенная
- Десятипроводная
- Семипроводная
- С совмещенными цепями
- Звезда
- Неполная
- Полная
- Косвенное
- С двумя ТТ
- Меркурий 230
- В фильтр токов нулевой последовательности
- Как правильно подключить счетчик через трансформаторы тока и напряжения
- Как выбрать трансформатор
- Прямого или непосредственного включения
- Однофазная цепь
- Класс точности
- Использование переходной испытательной коробки
- Особенности монтажа электронного счетчика
- Трансформатор тока: конструкция, схемы и его виды
- Конструкция и устройство трансформатора тока
- Схема трансформатора тока
- Подключение трансформатора тока
- Схема 1
- Схема 2
- Схема 3
- Схема 4
- Основная схема подключения измерительного трансформатора тока
- Принцип работы трансформатора тока
- Идеальный трансформатор тока: уравнение
- Виды трансформаторов тока
- По месту установки
- По способу установки
- По типу витков
- По назначению
- Достоинства трансформатора тока
- Применение трансформатора тока
- Где приобрести трансформатор тока?
Схемы подключения трансформаторов тока для электросчетчиков, как правильно установить
Применяя энергосистемы различного вида нужно быть готовым к особым моментам. Из-за них нужно совершить преобразование электрических величин в идентичные с обозначенным соотношением. Трансформаторы тока для электросчетчиков разработаны с целью существенного расширения типовых границ измерений устройствами учета.
Общие требования
Энергомер разработан специально для определения величины расходуемой мощности электрических устройств и для упрощения расчетов нагрузки на розетку. Обучение тому, как им пользоваться происходит быстро. Ведь помогает инструкция по использованию.
Принцип работы и назначение измерительного трансформатора
Нужны достижения определенных показателей, при которых верно функционирует оборудование. Монтаж приборов нужно поручить опытным специалистами. Они должны обладать группой допуска к электротехническим работам как минимум третьего уровня. А перед монтированием трансформаторов тока (ТТ) нужно проверить механизм на присутствие изъянов. Они могут возникнуть в результате неправильной сборки или повреждений.
Измерительные трансформаторы превращают базовые сведения электрических цепей (напряжение или ток), сокращая их количество до предписанного значения. Работают аппараты по-разному. Это обусловлено их внутренним механизмом и предназначением.
Обозначение упрощает обращение с ними. Оно поможет выбрать наиболее подходящий механизм. Маркировка прибора обусловливается типом механизма. Например, ТТ свойственны такие обозначения, как: «Т» (1-ая буква) – трансформатор тока. А 2-ая буква в названии указывает на тип механизма.
Обозначения и их значения:
Третья буква обозначается вещество изоляции. Правильное изолирование токопроводящих деталей способствует безопасности.
Обозначения веществ изоляции и их значения:
После букв есть числовые обозначения. Эти обозначения указывают коэффициент трансформации, климат и класс изоляции.
Схемы подключения трехфазного счетчика электроэнергии
Только верно присоединенный счетчик правильно определяет и контролирует количество используемого тока. Поэтому прибор следует верно присоединить. Схема монтирования обусловливается видом.
Полукосвенная
В сеть монтируется с ТТ. Поэтому возможно присоединять в сети с высокими мощностями. Разрешается до 60 кВт. Применяя этот метод учета, для установления трат стоит разность показателей умножать на определенное значение трансформации.
Десятипроводная
Она пользуется большой популярностью. Именно ее эксперты советуют устанавливать сейчас. Ведь она имеет ряд преимуществ. У них нет гальванической связи токовых цепей прибора учета и цепей напряжения. Поэтому подключать ее гораздо безопаснее. А еще благодаря ей удобнее проводить манипуляции.
Не нужно отключать установки при смене счетчика или при проведении различных манипуляций. Он отличается правильностью. Ведь сбор сведений по всем фазам происходит независимо. Если происходит нарушение цепей учета по какой-то из фаз, функционирование учета на других фазах продолжается.
3х-фазный счетчик для правильного функционирования монтировать аккуратно. Особенное внимание стоит уделить маркировке. 10-проводная требует больше проводов, чем остальные схемы.
10-проводная имеет недостаток: значительный расход проводника для сборки вторичных цепей учета.
Семипроводная
Свое название получила из-за числа проводов, применяемых во время присоединения. Считается устаревшей, хоть и встречается.
Трансформаторный счетчик должен иметь контактную панель. Если ее нет, то должна присутствовать колодка. Они служат проводником соединения. Их располагают посреди электрического шнура и счетчика.
С совмещенными цепями
Во время этого способа цепи напряжения подсоединяют к токовым цепям монтажом соединений на ТТ.
Звезда
- все типы КЗ проводят ток индивидуально. А гарантия безопасности и функционирования, созданная данным способом, откликается на любое КЗ;
- ток в реле принадлежит к фазному;
- ток нулевой последовательности, не проходящий через реле, не выйдет за грани треугольника ТТ.
Неполная
Устанавливать неполную звезду стоит лишь в сетях, где есть нулевые изолированные точки. Они ограждают от междуфазных КЗ. Она откликается лишь на отдельные появления КЗ однофазного.
Полная
Если есть глухозаземлённая нейтраль, то нужно присоединение ТТ к трём фазам.
Косвенное
Если в сети аппараты, использующие энергию электричества, тратят ее больше номинального значение силы тока, проходящего сквозь счётчик тогда стоит вмонтировать разделительные ТТ. Присоединяют их в разрыв силовых токоведущих шнуров.
С двумя ТТ
В сетях 380 В, при образовании систем учёта расходуемой мощи больше 60кВт, 100А электросчетчик устанавливают, применяя косвенную схему присоединения трехфазного через ТТ. Это помогает измерять большую используемую мощь при помощи аппаратов учёта для меньшей мощи, используя коэффициент пересчёта показателей устройства.
Меркурий 230
Схемы сборки счетчика Меркурий с применением ТТ отличаются сложностью. Подключающий не должен забывать в процессе об ответственности. Обычно он применяется в сети 380 вольт.
В фильтр токов нулевой последовательности
Если есть однофазовое и двухфазное КЗ «земля», то выявляются токовые объемы в реле.
Как правильно подключить счетчик через трансформаторы тока и напряжения
Почти у всех счетчиков присутствует изображение того, как верно устанавливать их. Там есть обозначение контактов. А еще подробные обмоточные данные есть в паспорте.
Как выбрать трансформатор
Перед тем, как отдать предпочтение какому-то виду счетчика следует прочитать пункт 1.5.17 ПУЭ. Там написано, что объем вторичной обмотки не должен опускаться меньше 40% от установленного при самой большой нагрузке, ниже 5% при минимальной.
Стоит проследить за тем, чтобы была установлен лишь верный порядок фаз A, B, C. Фазометр определит это.
Еще стоит наблюдать за U и I. Первое значение должно быть равно напряжению или быть выше его, а второе, силе тока.
3 однофазных аппарата заменят трехфазный. Но, стоит знать, что каждый нуждается в своем преобразователе, что делает монтаж сложнее.
Прямого или непосредственного включения
Прямым включением агрегата называется непосредственное присоединение к системе в 220 и 380 В. Данное монтирование счетчика в электрическую линию отличается простотой. Нужно подсоединить окончания кабеля с обеих сторон.
При обычном наборе приборов этот метод подключения себя эффективен.
Но если среди приборов есть котел отопления, то метод нужно поменять на другой.
Однофазная цепь
Однофазная цепь состоит из двух шнуров. По одному из них ток поступает к пользователю, а по-другому идет обратно. При разъединении цепи ток не пройдет.
Узел счета — место соединения трансформатора тока с несущим проводником. Обычно им является электрошкаф со счетчиком.
Класс точности
Если верно выбрать ТТ, то покупатель сможет подключить замерные и защитные устройства к линиям высокого напряжения. Степень класса точности — самый важный параметр. Он указывает на погрешность измерения. Она не должна превышать критерии установленных государственных норм. Класс точности обусловливается базовыми особенностями. Туда входят погрешность по току и углу, а также индекс относительной полной погрешности. 2 первых коэффициента обусловливаются током намагничивания.
В аппаратах промышленного применения применяются несколько видов точности: 0.1, 0.5, 1.0, 3.0 и 10Р.
Согласно ГОСТу, класс точности должен быть ориентирован на токовые погрешности. Например, для коэффициента в ± 40 необходим класс 0.5, а для ±80—класс 1.0. Необходимо заметить, что классы 3.0 и 10Р согласно правилам не нормируются. Буква «S» указывает на класс точности в границах 0.01-1.2. Класс 10Р применяется для защиты. Относительная полная погрешность нормирования не превышает 10%.
Разрешается применения аппаратов с классом точности 1.0. Но применять их можно лишь, если у счетчика класс точности в две единицы.
Замена трансформаторного устройства нужна, если:
- электросчетчики с классом точности ниже 2.0. В частности, аппараты фиксирования с показателем погрешности 2,5;
- просроченной датой обязательной проверки;
- с прошедшим сроком использования;
- отсутствует пломба государственной инспектирующей организации.
Использование переходной испытательной коробки
- монтирование в узел учета эталонного устройства учета;
- ориентирование тока в электрической цепи через токовые петли;
- выключение токовых цепей;
- присоединение фазных проводников на устройстве учета.
Испытательная переходная коробка (КИП) создана для «закоротки» (шунтирования) токовых цепей.
Особенности монтажа электронного счетчика
Электрический счетчик разрешено монтировать прямым способом. А еще его можно смонтировать с помощью ТТ, применяющиеся в предприятиях.
Выбирая электросчетчик стоит обязательно учитывать общую мощь расходуемой энергии. Если расход составляет при одновременно включенных устройствах порядка 7 кВт, счетчик можно установить на 5-40А, но лучше, если поставить его на 5-60А.
Щит в квартиру выбирают в соответствии с номенклатурой и габаритами планируемого оборудования.
Источник
Трансформатор тока: конструкция, схемы и его виды
Трансформатор тока — это электротехнический или электромагнитный инструмент, который предназначен для изменения тока с больших величин на меньшие (то есть на более удобные для его эксплуатации).
Для эффективного использования защитных систем линий электропередач необходим ее тотальный контроль. К слову, данный контроль осуществляется не с помощью простого трансформатора, а благодаря трансформатору тока, который способен отслеживать и регулировать величину тока первичных и вторичных обмоток.
Конструкция и устройство трансформатора тока
Итак, если говорить о конструкции трансформатора тока, то следует начать с его внешнего вида.
Прежде всего, обратим внимание на шину, сердечник и диэлектрический корпус, а точнее, на его наличие. Для кого-то это покажется странным, но без него в конструкции трансформатора не обойтись. При этом этот корпус по форме может отличаться: он может быть представлен и в цилиндрическом виде, и в прямоугольном, и в квадратном.
В середине корпуса располагается небольшой промежуток, служащий охвату проводов, которые выступают в качестве первичной обмотки.
Раз уж мы коснулись обмотки, то нельзя не сказать о внутреннем устройстве трансформатора и двух видах обмотки (смотреть рисунок).
Схема трансформатора тока
Схема трансформатора тока состоит из следующих важных элементов:
- Нескольких магнитных проводов;
- Первичной обмотки;
- Вторичной обмотки;
- Клеммов;
- Выводов;
- Стального сердечника;
- Реле;
Обмотки трансформатора тока располагаются на повальном сердечнике (что играет роль в возникновении явления электромагнитной индукции).
Если говорить о сердечнике, то он выполняется при помощи электротехнического материала и играет роль магнитного провода.
Клеммы, в свою очередь, имеющие определенную маркировку, главным образом обеспечивают процесс входа и выхода тока с первичной и вторичной обмоток.
А вот реле трансформатора тока, подключенное к кабелю, обеспечивает правильное функционирование устройства, снижая величину тока до необходимого значения.
Подключение трансформатора тока
Подключение трансформатора тока в цепь может осуществляться сразу несколькими способами:
Схема 1
Итак, данная система состоит сразу из трех трансформаторов тока, которые обобщены и закреплены в одну звезду. Эту схему принято использовать в качестве цепной защиты от короткого замыкания (будь то многофазное или однофазное замыкание). В том случае, если по цепи проходит ток ниже установленного уровня реле (ka 1-ka 3), то режим работы будет считаться нормальным и цепная защита короткого замыкания не сработает.
Схема №1
Стоит сказать, что ток, протекающий в цепи от ka 0-реле, принято воспринимать в виде геометрической суммы тока (сумма всех 3-х его фаз) Если увеличить в какой-либо фазе ток, то защитная цепь короткого замыкания включится в работу (реле (ka 1-ka 3)).
Для отключения трансформатора в этой цепи и схеме необходимо по-просту приземлить ток.
Схема 2
Вторая схема подключения трансформатора тока в цепь имеет схожие черты с первой. Однако, есть существенные отличия, о которых нельзя не сказать. Итак, это структура, включающая несколько трансформаторов тока, как правило, используется в целях безопасности цепи от межфазного замыкания (важное замечание — электрическая цепь имеет нейтральную заземленность).
Схема №2
Данная система начнет работать в случае прохождения тока через реле (опять же ka 1-ka 3) и наличия не самых мощных элементов (потребителя и источника).
Схема 3
Пришло время поговорить и о схеме под номером три, не имеющей серьезных отличий от предыдущих. Она представляет из себя некое соединение в форме треугольника, где нормальный режим работы осуществляется путем проникновения тока в реле.
Схема №3
Как правило, эта структура применяется в электрических установках для проведения релейных ( релейных — означает дифференциальных, которые отличаются своей селективностью и быстротой действия).
Схема 4
И, наконец, последний — четвертый вид схемы.
Схема №4
Данная структура считается достаточно практичной и универсальной. Это связано с тем, что процесс подключения трансформатора тока в таком виде не только позволяет защитить электрическую цепь от однофазных/межфазных замыканий, но и способна повысить величину тока в необходимых реле.
Отключение также происходит путем заземления.
Основная схема подключения измерительного трансформатора тока
Плавно мы подошли к основной схеме подключения измерительного трансформатора тока.
На рисунках 1 и 2 трансформатор имеет обозначение “TA” с индексами и представлен в схемах с двухфазными и трехфазными обмотками. Стоит уточнить, что имея формы полной звезды и неполной, трансформаторы включены в изолированную, а самое главное нейтральную сеть.
Кроме того, добавим, что структура подключения этого “TA” применяется для защиты от замыканий цепи, а также регулирования баланса между фазами.
Принцип работы трансформатора тока
Принцип работы трансформатора тока основан на принципах электромагнитной индукции, которая действует в электрическом/магнитном поле. Более подробная информация представлена на рисунке:
Он преобразовывает начальное значение векторного тока, проходящего в электрической цепи, во вторичную величину (при этом важно учесть фактор пропорционального равенства между модулем и углом передачи тока).
Первичная обмотка устройства, имеющая некое число витков (W1), пропускает через себя ток (I1). Ток, в свою очередь, преодолевает некоторое сопротивление (Z1).
Рядом с данной катушкой происходит процесс образования магнитного потока (Ф1), регулируемый при помощи перпендикулярно-расположенных магнитных проводов (важное замечание — именно такое расположение может обеспечить минимальную потерю во время преобразования электроэнергии).
После пересечения перпендикулярных витков (W2) обмотки, (Ф1) — магнитный поток формирует силу электрического движения (Е2). Эта сила вызывает возникновение тока (I2) на обмотке (вторичной). А вот I2, который подключен к нагрузке выхода (Zн), преодолевает Z2 — сопротивление, и способствует образование меньшего напряжения на концах электроцепи.
Значение K 1 — коэффициент трансформации — определяется выражением: I1 / I2 (отношение первого вектора ко второму). Величина этого отношения вычисляется в начальных построениях проектирования устройства.
Различия между истинными показателями модели и расчетным результатом объясняется важным аспектом метрологии, которым является вид класса точности устройства.
Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока. Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки.
Во время эксплуатации трансформатора тока нельзя забывать про возникновение нежелательных проблем, одной из которых является пораженческая способность пробоя изоляции (из-за высокого потенциала).
Так как магнитный провод трансформатора тока имеет металлический компонент в строении, у него есть отличные свойства проводимости, которые помогают ему соединить между собой первичную и вторичную обмотки.
Несмотря на то, что обмотки изолированы, у того, кто эксплуатирует трансформатор, все равно присутствует риск получения повреждений и травм от этого электрического прибора.
Для того, чтобы риски минимизировать, необходимо использовать заземление какого-либо вывода устройства (для предотвращения короткого замыкания из-за высокого потенциала). Кроме того, нужно сказать и про возможный разрыв на вторичной обмотке цепи из-за перенапряжения устройства.
Говоря о принципах работы трансформатора тока, скажем и о том, что к его главному предназначению следует отнести решение эксплуатационных задач электротехнических систем, ведь наша промышленность готовит огромный ассортимент выпуска электрических установок, которые не всегда обладают 100-процентным коэффициентом полезности.
А трансформатор способен этот КПД увеличить благодаря усовершенствованию схем и конструкций.
Идеальный трансформатор тока: уравнение
Идеальный трансформатор тока представляет из себя электромагнитное устройство, которое способно не допускать потерю энергию во время увеличения напряжения и во время рассеивания обмотков.
Итак, уравнение для такого трансформатора будет выглядеть следующим образом:
- U2/U1 — отношение напряжения на конце вторичной обмотки к напряжению первичной;
- N2/N1 — отношение числа витков вторичной обмотки к числам витков первичной;
- I1/I2 — отношение тока первичной цепи ко вторичной;
- n — трансформационный коэффициент.
Виды трансформаторов тока
В современном мире существует огромное различных видов трансформаторов, которых можно классифицировать сразу по нескольким признакам.
По месту установки
Начнем с видов трансформаторов, которые классифицируются по месту установки:
- Специальные (используются в транспортных средствах и производственных предприятиях);
- Встроенные (устанавливаются в конструкции других электрических приборах);
- Внутренние (используются в закрытых комплексных предприятиях);
- Наружные (устанавливаются на открытом воздухе);
- Переносные (универсальные, можно устанавливать и на открытом воздухе, и в закрытых лабораториях).
По способу установки
Продолжим видами трансформаторов, которые классифицируются по способу установки:
- Опорные (одноступенчатые и многоступенчатые устройства);
- Проходные (образуют металлическую подставку и устанавливаются на производственных станциях).
По типу витков
Подошла очередь видов тех трансформаторов, которые классифицируются по типу витков:
- С одним витком (имеют форму стержня и используются в производственных предприятиях);
- Со множеством витков (имеют форму петли и устанавливаются в многофазных системах и конструкциях);
- Без первичной обмотки (имеют форму шин и применяются в качестве контроля фаз электрической сети ).
По назначению
Заканчиваем видами трансформаторов, которые классифицируются по различным назначениям:
- Лабораторные (способны обеспечить высокую точность величин);
- Измерительные (являются приборами учета);
- Многоступенчатые (имеют сложное строение, поэтому способны устроить процесс трансформации электротока);
- Промежуточные (способны преобразовать значение тока первичной обмотки или вторичной);
- Защитные.
Достоинства трансформатора тока
Трансформаторы тока имеют огромное количество достоинств, о которых следует рассказать. Вот главные:
- Способность регулировать электрический ток в цепи;
- Простая изоляция (гарантия безопасности во время эксплуатации);
- Точность действий и простота использования прибора;
- Большой охват и интервал измерения электрического тока;
- Не самые большие габариты (в зависимости от вида);
- Не самая существенная масса (в зависимости от вида);
- Развязка первичной цепи;
- Развязка вторичной цепи;
- Практически полная независимость от внешней температуры;
- Способность выдерживать процесс перенапряжения;
- Способность быстрого восстановления после короткого замыкания цепи;
- Способность передавать даже электрический импульс.
Применение трансформатора тока
Главной особенностью трансформатора является его способность преобразовать ток из одной величины в другую. Этим и можно объяснить его широкое применение в современном обществе.
Также данное устройство применяют в электрических источниках питания.
Кроме того, “ТТ” способен обеспечит некий контакт с землей и благодаря эффекту заземления обезопасить окружающих от переизбытка тока.
Если говорить о быте, то трансформатор тока используется в радиоэлектронике, в сварочных аппаратах и другой электротехнике.
Где приобрести трансформатор тока?
Как вы уже поняли из ранее прочитанного материала — трансформатор тока является очень востребованным прибором. Его широкое применение, прежде всего, объясняется качественными характеристиками, которые позволяют устройству выполнять различные электротехнические “задачи”.
Итак, трансформатор тока может понадобиться любому из нас. На случай, если это коснется и вас, то посоветую вам приобрести данный электромагнитный прибор (или его аналог) на Aliexpress (жми). Там, как всегда, хороший и богатый выбор, а также выгодные цены на товары.
А вот вашему вниманию старое, но познавательное видео:
Источник