Типы дыхания микроорганизмов
Существует два типа дыхания мкробов – аэробное и анаэробное.
Аэробное дыхание микроорганизмов — это процесс, при котором акцептором водорода (протонов и электронов) является молекулярный кислород. В результате окисления, главным образом сложных органических соединений, образуется энергия, которая выделяется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.
Полное окисление. Основной источник энергии у микроорганизмов— углеводы. При их расщеплении, которое происходит разными путями, получается важный промежуточный продукт — пировиноградная кислота. Полное окисление пировиноградной кислоты происходит в цикле трикарбоновых кислот (цикл Креб-са) и дыхательной цепи. В результате расщепления глюкозы в аэробных условиях процесс окисления идет до конца-—до образования углерода диоксида и воды с освобождением большого количества энергии: С6Н12О6 + 6О2 -*■ 6СО2 + 6Н2О + 2874,3 к Дж.
Неполное окисление. Не все аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и другие, они образуются плесневыми грибами. Например, осуществляется аэробное дыхание уксуснокислыми бактериями, у которых при окислении этилового спирта образуется уксусная кислота и вода:
У некоторых бактерий в процессе дыхания происходит окисление неорганических соединений. Примером окисления неорганических соединений могут служить процессы нитрификации, при которых нитрифицирующие бактерии вначале окисляют аммиак до азотистой кислоты, а затем до азотной. В каждом случае при этом выделяется энергия: в первой фазе 274,9 кДж, во второй—87,6 кДж.
Анаэробное дыхание осуществляется без участия молекулярного кислорода. Различают анаэробное нитратное дыхание, анаэробное сульфатное дыхание и брожение. При анаэробном дыхании акцептором водорода являются окисленные неорганические соединения, которые легко отдают кислород и превращаются в более восстановленные формы, что сопровождается выделением энергии.
1. анаэробное нитратное дыхание — восстановление нитратов до молекулярного азота
2. анаэробное сульфатное дыхание — восстановление сульфатов до сероводорода.
3. Брожение — расщепление органических углеродсо-держащих соединений в анаэробных условиях. Оно характеризуется тем, что последним акцептором водорода служит молекула органического вещества с ненасыщенными связями. Вещество при этом разлагается только до промежуточных продуктов, представляющих собой сложные органические соединения (спирты, органические кислоты). Заключенная в них энергия в небольших количествах выделяется в окружающую среду. При брожении энергии освобождается меньше. Например, при брожении глюкозы освобождается в 24,5 раза меньше энергии, чем при ее аэробном окислении.
Все виды брожений до образования пировиноградной кислоты протекают одинаково. Дальнейшее превращение пировиноградной кислоты зависит от свойств микроба. Гомофермен-тативные молочнокислые бактерии превращают ее в молочную кислоту, дрожжи — в этиловый спирт и т. д.
Классификация микробов по типу дыхания.
По типу дыхания микроорганизмы классифицируют на четыре группы.
1. Облигатные (безусловные) аэробы растут при свободном доступе кислорода. К ним относятся уксуснокислые бактерии, возбудители туберкулеза, сибирской язвы и многие другие.
2. Микроаэрофильные бактерии развиваются при низкой (до 1 %) концентрации кислорода в окружающей атмосфере. Такие условия благоприятны для актиномицетов, лептоспир, бруцелл.
3. Факультативные анаэробы развиваются как при доступе кислорода воздуха, так и в отсутствие его. Имеют соответственно два набора ферментов. Это энтеробактерии, возбудитель рожи свиней.
4. Облигатные (безусловные) анаэробы развиваются при полном отсутствии кислорода в окружающей среде. Анаэробные условия (обходимы маслянокислым бактериям, возбудителям столбняка, ботулизма, газовой гангрены, эмфизематозного карбункула, некробактериоза.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
ДЫХАНИЕ МИКРООРГАНИЗМОВ
Поступающие в микробную клетку питательные вещества превращаются затем в те или иные составные части цитоплазмы, ядра, оболочки клетки и т. д. Для этих сложных синтетических процессов необходима затрата определенного количества энергии, которую микробная клетка должна получать для поддержания своей жизнедеятельности так же непрерывно, как и питательные вещества.
Энергия необходима не только для синтетических процессов, но и для других многочисленных проявлений жизнедеятельности микроорганизмов — роста, размножения, движения, образования спор и капсул и т. д.
Всю необходимую энергию микробные клетки получают за счет реакций, осуществляемых путем окисления различных химических соединений.
Процессы, обеспечивающие энергетические потребности микроорганизмов, объединяются под названием дыхательных. Особенно доступны окислению в процессе дыхания углеводы, освобождающие большое количество энергии. Используются также жиры, белки, кислоты и другие органические вещества.
Луи Пастер впервые установил совершенно необычайную способность некоторых микроорганизмов развиваться без использования кислорода воздуха в отличие от высших организмов — растений и животных, которые могут жить лишь в атмосфере, содержащей кислород.
По этому признаку микроорганизмы разделены на две группы: аэробы и анаэробы.
Аэробы для окисления органического материала нуждаются в кислороде воздуха, например уксуснокислые бактерии, плесневые грибы.
В процессе аэробного дыхания растений и животных органическое вещество окисляется до конечных продуктов — углекислого газа и воды. При этом освобождается весь запас энергии данного вещества:
С2Н5ОН + 302 = 2С03 + ЗН20 + 1369 кДж
Этиловый углекислый
спирт газ
У микроорганизмов такое дыхание встречается редко. Чаще органические вещества разрушаются не до конца. Образующиеся при этом все еще довольно сложные продукты могут использоваться человеком в хозяйственных целях (уксусная кислота, сорбоза, диоксиацетон и др.). Однако при неглубоком окислении выделяется меньше энергии. Например, энергетический баланс при дыхании уксуснокислых бактерий может быть выражен уравнением
Примером типичных аэробов являются также палочка чудесной крови, сенная палочка, бактерии туберкулеза и др. Не только уксуснокислые, но и некоторые другие аэробные микробы могут быть использованы для получения полезных для человека веществ. Для этого необходимо прекращать тем или иным путем вызываемые ими процессы окисления на каком–либо этапе, чтобы не произошло полного окисления и остались продукты с запасом скрытой энергии.
Анаэробы — это микроорганизмы, способные к дыханию без использования свободного кислорода. Анаэробное дыхание происходит за счет отнятия у субстрата водорода.
Отношение анаэробных микроорганизмов к кислороду различно. Одни из них совсем не переносят кислорода, в связи с чем называются облигатными, или строгими, анаэробами. К их числу принадлежат, например, возбудители маслянокислого и пропионовокислого брожений, столбнячная палочка. Другие микробы могут развиваться и в аэробных, и в анаэробных условиях, поэтому их называют факультативными, или условными, анаэробами. Таковыми являются молочнокислые бактерии, кишечная и тифозная палочки, протей, дрожжи и другие микроорганизмы.
Факультативные анаэробы в зависимости от условий среды могут изменять анаэробный тип дыхания на аэробный. Так, дрожжи при ограниченном притоке кислорода расщепляют сахар на спирт и углекислоту; при обильной аэрации у них возникает аэробное дыхание с полным окислением Сахаров до углекислоты и воды.
Типичные анаэробные дыхательные процессы принято называть брожениями. Примером получения энергии анаэробным путем может служить спиртовое брожение, осуществляемое многими дрожжами и некоторыми другими микроорганизмами по схеме
Из уравнения видно, что часть субстрата, превратившаяся в углекислый газ, представляет глубоко окисленное по сравнению с гексозой соединение (отношение числа атомов углерода к кислороду в составе углекислого газа 1:2 против исходного 1:1). Другая часть, превратившаяся в этиловый спирт, восстановилась (отношение числа углеродных атомов к кислороду 2 : 1). Окислительно–восстановительный процесс затронул исходный продукт сбраживания без участия кислорода. Такой тип превращений субстрата характерен для всех типичных брожений — молочнокислого, маслянокислого и др.
Количество энергии, выделяющееся при аэробном дыхании, значительно больше, чем при анаэробном. Так, при аэробном окислении глюкозы до углекислого газа и воды освобождается примерно в 25 раз больше энергии, чем при спиртовом брожении. Это объясняется тем, что конечные продукты, которые получаются в результате анаэробного окисления, всегда представляют собой сложные органические соединения, имеющие большой запас энергий, — спирты, кислоты и др. В связи с этим многие брожения применяются для получения ценных пищевых и технических продуктов.
Продукты жизнедеятельности одних микроорганизмов часто могут быть энергетическим материалом для других. Так, дрожжи образуют из сахара этиловый спирт, который уксуснокисные бактерии окисляют в уксусную кислоту.
Из всего количества энергии, выделившегося в ходе дыхательных процессов, на нужды самих микроорганизмов обычно используется примерно лишь четвертая часть. Значительная доля энергии (75–90%) выделяется в виде тепла в окружающее пространство. Выделением тепла при дыхании микроорганизмов обусловлены процессы самосогревания влажного, сена, навоза, торфа, зерновых масс, муки.
Существует довольно много светящихся бактерий, у которых окислительные процессы в клетке сопровождаются отдачей световой энергии. Свечение морской воды, прелого дерева и пищевых продуктов (мяса, рыбы) происходит из–за присутствия светящихся бактерий (фотобактерий). Их свечение обусловлено интенсивным окислением особых фотогенных веществ.
По современным представлениям, значение дыхания в обмене веществ не ограничивается ролью только энергетического процесса. Установлено, что часть более или менее простых веществ, образующихся в ходе дыхания, вновь вовлекается в процесс синтеза необходимых для организма сложных веществ, т. е. используется в пластических целях.
Выделяемые в окружающую среду продукты жизнедеятельности, накапливаясь, оказывают губительное влияние на сами микроорганизмы, их выделяющие. При увеличении концентрации продуктов обмена вереде процессы жизнедеятельности замедляются и практически могут прекратиться совсем. Так, жизнедеятельность дрожжей значительно замедляется при накоплении в сбраживаемом субстрате 10–14% спирта, а уксуснокислые бактерии остаются жизнедеятельными при накоплении не более 3–4% уксусной кислоты. Это явление можно объяснить тем, что накапливающиеся продукты обмена тормозят те самые биохимические реакции, в процессе которых они появляются.
Некоторые продукты обмена, оказывающие влияние на продуцирующие их организмы, применяются в хозяйственной практике. Так, молочная и уксусная кислоты, углекислый газ, этиловый спирт и другие вещества используются для защиты пищевых продуктов от микробиологической порчи.
Источник
Дыхание микроорганизмов. Типы дыхания. Классификация микроорганизмов в зависимости от типа дыхания.
Под дыханием понимают совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности микроорганизмов. По источникам энергии микроорганизмы делят на:
1.фототрофы – используют энергию солнечного света благодаря пигментам, близким к хлорофиллу (пурпурные серобактерии)
2.хемотрофы – получают энергию за счет окисления неорганических и органических соединений (чаще глюкозу – нитрифицирующие бактерии)
Органеллы дыхания у бактерий – мезосомы, содержащие специальные дыхательные ферменты типа цитохромоксидаз. По типу дыхания микроорганизмы делят на:
1. облигатные аэробы – они способны получать энергию только путем дыхания и нуждаются в О2 как акцепторе протонов и электронов в окислительно-восстановительных процессах (микобактерии туберкулеза, возбудитель холеры)
2. облигатные анаэробы – способны расти только в среде, лишенной О2 (для них О2 токсичен). Для них как тип окислительно-восстановительных процессов характерна ферментация (возбудители столбняка, газовой гангрены, ботулизма).
3. Факультативные анаэробы — способны расти как при наличии О2, так и в отсутствии его. Среди них различают:
— аэротолерантные – могут расти в присутствии атмосферного О2, но не способны его использовать, так как получают энергию исключительно с помощью брожения (молочно-кислые бактерии)
— факультативно-анаэробные – которые в отсутствии О2 способны перестраиваться на брожение (энтеробактерии).
Различают микроаэрофилы – нуждаются в малых количествах кислорода (лептоспиры, бруцеллы) и капнофилы – нуждаются в повышенном содержании СО2 (менингококки, гонококки)
Источник
Классификация микробов по типу дыхания.
По типу дыхания микроорганизмы классифицируют на четыре группы.
1. Облигатные (безусловные) аэробы растут при свободном доступе кислорода. К ним относятся уксуснокислые бактерии, возбудители туберкулеза, сибирской язвы и многие другие.
2. Микроаэрофильные бактерии развиваются при низкой (до 1 %) концентрации кислорода в окружающей атмосфере. Такие условия благоприятны для актиномицетов, лептоспир, бруцелл.
3. Факультативные анаэробы развиваются как при доступе кислорода воздуха, так и в отсутствие его. Имеют соответственно два набора ферментов. Это энтеробактерии, возбудитель рожи свиней.
4. Облигатные (безусловные) анаэробы развиваются при полном отсутствии кислорода в окружающей среде. Анаэробные условия (обходимы маслянокислым бактериям, возбудителям столбняка, ботулизма, газовой гангрены, эмфизематозного карбункула, некробактериоза.
Существует два типа дыхания мкробов – аэробное и анаэробное.
Аэробное дыханиемикроорганизмов — это процесс, при котором акцептором водорода (протонов и электронов) является молекулярный кислород. В результате окисления, главным образом сложных органических соединений, образуется энергия, которая выделяется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.
Полное окисление. Основной источник энергии у микроорганизмов— углеводы. При их расщеплении, которое происходит разными путями, получается важный промежуточный продукт — пировиноградная кислота. Полное окисление пировиноградной кислоты происходит в цикле трикарбоновых кислот (цикл Креб-са) и дыхательной цепи. В результате расщепления глюкозы в аэробных условиях процесс окисления идет до конца-—до образования углерода диоксида и воды с освобождением большого количества энергии: С6Н12О6 + 6О2 -*■ 6СО2 + 6Н2О + 2874,3 к Дж.
Неполное окисление. Не все аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и другие, они образуются плесневыми грибами. Например, осуществляется аэробное дыхание уксуснокислыми бактериями, у которых при окислении этилового спирта образуется уксусная кислота и вода:
У некоторых бактерий в процессе дыхания происходит окисление неорганических соединений. Примером окисления неорганических соединений могут служить процессы нитрификации, при которых нитрифицирующие бактерии вначале окисляют аммиак до азотистой кислоты, а затем до азотной. В каждом случае при этом выделяется энергия: в первой фазе 274,9 кДж, во второй—87,6 кДж.
Анаэробное дыхание осуществляется без участия молекулярного кислорода. Различают анаэробное нитратное дыхание, анаэробное сульфатное дыхание и брожение. При анаэробном дыхании акцептором водорода являются окисленные неорганические соединения, которые легко отдают кислород и превращаются в более восстановленные формы, что сопровождается выделением энергии.
1. анаэробное нитратное дыхание — восстановление нитратов до молекулярного азота
2. анаэробное сульфатное дыхание — восстановление сульфатов до сероводорода.
3. Брожение — расщепление органических углеродсо-держащих соединений в анаэробных условиях. Оно характеризуется тем, что последним акцептором водорода служит молекула органического вещества с ненасыщенными связями. Вещество при этом разлагается только до промежуточных продуктов, представляющих собой сложные органические соединения (спирты, органические кислоты). Заключенная в них энергия в небольших количествах выделяется в окружающую среду. При брожении энергии освобождается меньше. Например, при брожении глюкозы освобождается в 24,5 раза меньше энергии, чем при ее аэробном окислении.
Все виды брожений до образования пировиноградной кислоты протекают одинаково. Дальнейшее превращение пировиноградной кислоты зависит от свойств микроба. Гомофермен-тативные молочнокислые бактерии превращают ее в молочную кислоту, дрожжи — в этиловый спирт и т. д.
№16 Рост и размножение микробов
Жизнедеятельность бактерий характеризуется ростом — формированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размножением — самовоспроизведением, приводящим к увеличению количества бактериальных клеток в популяции.
Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Актиномицеты, как и грибы, могут размножаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные — путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.
Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра — нуклеоида.
Репликация ДНК происходит в три этапа: инициация, элонгация, или рост цепи, и терминация.
Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура — непрерывной.
При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:
1. лаг-фаза;
2. фаза логарифмического роста;
3. фаза стационарного роста, или максимальной концентрации бактерий;
4. фаза гибели бактерий.
Эти фазы можно изобразить графически в виде отрезков кривой размножения бактерий, отражающей зависимость логарифма числа живых клеток от времени их культивирования.
Лаг-фаза — период между посевом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4—5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов.
Фаза логарифмического (экспоненциального) роста является периодом интенсивного деления бактерий. Продолжительность ее около 5— 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20—40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.
Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.
Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжительность ее колеблется от 10 ч до нескольких недель. Интенсивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.
Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы), различной консистенции и цвета, зависящего от пигмента бактерий.
Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают её. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.
Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксиддисмутазой и пероксидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.
№17 Ферментативная активность микробов, ее значение и методы изучения
В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образуемые бактериальной клеткой, могут локализоваться как внутри клетки — эндоферменты, так и выделяться в окружающую среду — экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить при помощи дифференциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.
Источник