2.2.3. Типовые способы геометрически неизменяемого
Типовые способы различаются набором соединяемых объектов (в порядке усложнения: «диск и точка», «два диска», «три диска», причём точка формально может рассматриваться как диск бесконечно малых размеров); связи – только необходимые.
№ и на-звание способа
к расположению связей
1. Соедине-ние точки и диска
к диску с помощью двух линейных связей
2. Соедине-ние двух дисков
) соединение двух дисков
с помощью трёх линейных связей
Табл. 3 (окончание)
Оси трёх связей
не должны сходиться в одной точке или быть параллельными
) соединение двух дисков
и линейной связи
Ось линейной связи не должна проходить через центр цилиндрического шарнира или быть нормальной к оси поступательного шарнира
3. Соедине-ние трёх дисков
а) попарное соединение трех дисков
с помощью трёх пар
Три точки (А, В, С) пересечения
осей пар связей
не должны лежать на одной прямой
с помощью трёх цилиндрических шарниров
Шарниры А, В и С не должны лежать на одной прямой
Легко заметить, что типовые способы и приёмы различаются только формально наборами дисков и связей, но по существу могут в ряде случаев являться вариантами описания одного и того же соединения. Так, способ 1 и приём 2б эквивалентны приёму 3б, если стержни рассматривать не как связи 1-го типа, а как диски. Используя понятие фиктивных (условных) шарниров, можно обнаружить сходство приёмов 3а и 3б. Приём 2а трансформируется в 2б введением фиктивного шарнира как точки пересечения направлений осей каких-либо двух из трёх линейных связей. Из этого замечания следует, что в процессе синтеза системы некоторая операция соединения дисков может истолковываться по-разному – с применением того или иного типового способа (приёма), наиболее очевидного и удобного в каждом конкретном случае. Более того, отметим необязательность сохранения на этапе структурного анализа той же номинации дисков и связей, которая была введена и использована ранее в количественном анализе. При выполнении исследования структуры системы может оказаться удобным иное представление о дисках и связях – этим имеет смысл рационально пользоваться в целях упрощения.
2 30.2.4. Алгоритм структурного анализа
1) в первую очередь обнаруживается диск с достаточным (не менее трёх) числом связей с «землёй» и проверяется правильность наложения на него внешних связей сопоставлением с типовым способом 2 (при этом могут быть выявлены избыточные связи); в случае отсутствия такого диска целесообразно осуществить, если это возможно, предварительное укрупнение структуры системы путём соединения исходных дисков типовыми способами, в результате чего среди полученных крупных дисков могут появиться такие, у которых внешних связей достаточно для образования геометрически неизменяемой части системы;
2) если даже после укрупнения не удаётся обнаружить ни одного диска, геометрически неизменяемо соединённого с «землёй», то выявляются два диска с не менее чем двумя внешними связями каждый, которые рассматриваются вместе с диском «земля» на предмет соединения по способу 3; если же и этот вариант первой операции синтеза не удаётся применить, то это означает, что система не может быть образована с помощью типовых способов, и должны использоваться другие подходы (изложение их будет дано позднее);
3) далее производится присоединение других дисков, причём сначала рассматриваются возможности применения способов с более простыми наборами соединяемых объектов («диск –точка», «два диска») и лишь в последнюю очередь – приёмов соединения трёх дисков.
При выполнении каждой операции синтеза обязательно проверяется выполнение требований к расположению связей (табл. 3) – это позволяет обнаружить дефекты структуры расчётной схемы сооружения.
Если качественный анализ приводит к заключению об отсутствии структурных дефектов (наличие лишних связей к таковым не относится!), то делается вывод о геометрической неизменяемости системы; при этом в случае отсутствия лишних связей ГНС является статически определимой (количественный признак этого после выполнения структурного анализа – W = 0); а при W 10 / 14 10 11 12 13 14 > Следующая > >>
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник
Стандартные случаи соединения дисков в геометрически неизменяемые системы
1.
|
Соединение 2-х дисков. Два диска образуют ГН систему, если они соединены при помощи 3-х стержней. Оси стержней не должны пересекаться в одной точке (это случай мгновенной изменяемости), а также не должны быть расположены параллельно (это случай ГИ системы). Подобное соединение дисков показано на рис. 1.16, а. Так как с кинематической точки зрения 1 шарнир эквивалентен двум стержням, то, заменив 2 стержня на 1 шарнир, расположенный на пересечении этих стержней, получим еще один способ соединения двух дисков – при помощи шарнира и стержня (рис.1.16, б). Стержень при этом не должен пересекать шарнир (это признак мгновенной изменяемости).
| |
|
2.
|
Соединение 3-х дисков.
| |
| |
| |
|
число степеней свободы этой системы. Присоединим, например, диаду к ферме, показанной на рис. 1.13 (W для этой системы = 0). В результате образуется ГН система, число степеней свободы которой также равно 0 (рис.1.18).
Порядок выполнения кинематического анализа
1. Производим подсчет числа степеней свободы по формуле (1.1), либо (1.2). Земля при этом не является диском.
2. Если W>0 – система геометрически изменяема. Кинематический анализ окончен.
Источник
Строительная механика (стр. 4 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 9 10 11 12 |
Для уточнения отказываемся от гипотезы отвердения и рассматриваем некоторое возможное (не противоречащее связям) произвольное деформированное состояние системы – на рис. 1.36, в оно изображено штриховой линией. По направлению связи 2 в узле К имеется перемещение 0 – значит, связь 2 – лишняя. Наконец, удалив связь 3, получаем систему, показанную на рис. 1.36, г, – в ней точка С не может перемещаться ни в случае отсутствия деформаций элементов, ни в деформированном состоянии, т. е.
= 0 и
– признак того, что связь 3 – ложная.
Лишние и ложные связи с количественной точки зрения являются избыточными, так как они не нужны для обеспечения геометрической неизменяемости системы – для этого достаточно только необходимых связей. Число избыточных связей определяется как nизб. св. = nc – = – W.
Несмотря на своё название, лишние связи, тем не менее, нужны для реализации определённых эксплуатационных качеств сооружения и появляются в расчётной схеме как результат принятия тех или иных инженерных решений при проектировании конструкций. Более того, в действительности систем без лишних связей не бывает – они возникают лишь в результате формирования расчётных моделей сооружений с идеализацией их реальных свойств (в частности, если пренебрегать трением в шарнирах, опорах и т. п.).
А вот ложные связи не нужны вообще, их можно рассматривать как «паразитные»; они должны быть выявлены и удалены из системы до начала её расчёта – в противном случае математическое решение задачи определения усилий и перемещений в сооружении окажется невозможным. В большинстве случаев специального исследования по критерию = 0 для обнаружения ложной связи не требуется, так как наглядным признаком её обычно является то, что она наложена на уже неподвижную точку (например, в системе на рис. 1.36 – связь 3 в точке С, которая и без этой связи уже неподвижна, будучи закреплена горизонтальной и нижней вертикальной жёсткими связями 1-го типа).
Поскольку «сортировка» избыточных связей – разделение их на лишние и ложные – производится путем учёта деформаций элементов системы (заметим, что это единственная процедура кинематического анализа, в которой не применяется гипотеза отвердения), то при разных исходных предпосылках о характере деформирования рассматриваемой системы возможны и разные оценки кинематического качества одной и той же избыточной связи – в одних случаях она может быть определена как лишняя, а в других – как ложная. Например, если систему, показанную на рис. 1.37, предполагается в дальнейшем рассчитывать с учётом всех видов деформаций стержневых элементов (изгиб, сдвиг, растяжение-сжатие), то горизонтальная связь в точке С – лишняя, так как её удаление не изменяет кинематическую природу системы, которая остаётся геометрически неизменяемой; но точка С получает возможность перемещаться горизонтально из-за продольных деформаций стержней АВ и ВС – следовательно, 0. Но если, как это часто делается в расчётах рамных систем, продольные деформации (укорочения-удлинения) стержней считать пренебрежимо малыми в сравнении с перемещениями, возникающими при искривлениях элементов от их изгиба, а сами «изгибные» перемещения – малыми, то при деформации горизонтального стержня АВС расстояние между точками А и С изменяться не будет, т. е. точка С останется неподвижной даже при удалённой горизонтальной связи – таким образом,
= 0, и указанная связь оказывается ложной.
Если в реальном сооружении со схемой по рис. 1.38 допускается возникновение больших (соизмеримых с длинами элементов) перемещений, обусловленных изгибом, то и величину следует оценивать при больших перемещениях (рис. 1.38) – видно, что в этом случае
0, и горизонтальная связь в точке С – лишняя.
Приведённые примеры подтверждают обязательность корректного и строгого учёта исходных предпосылок и рабочих гипотез, определяющих особенности деформирования рассматриваемой системы, при выполнении её структурного анализа.
Выше уже указывалось, что по количественной оценке лишние и ложные связи входят в одну группу, являясь избыточными связями. Можно также заметить, что у необходимых и лишних связей есть общее свойство, заключающееся в том, что и те, и другие накладывают ограничения на перемещения системы (правда, в случае лишней связи – на перемещение, определяемое с учётом деформаций элементов). Следовательно, и необходимые, и лишние связи влияют на кинематические свойства системы и поэтому объединяются в категорию кинематических связей, в отличие от ложных связей, являющихся некинематическими.
В табл. 2 дано обобщение приведённых выше сведений о классификации связей по кинематическому признаку, а также сопутствующих терминов.
Некоторые особенности анализа кинематической природы связей
В рассмотренном примере (см. рис. 1.36) связь 1 однозначно (безусловно) определена как необходимая. Относительно лишних и ложных связей такой однозначности нет. В частности, в узле С ложной связью может быть объявлена либо связь 3 (как это сделано в примере), либо нижняя вертикальная связь, если предположить, что она введена в узел С после его закрепления верхней вертикальной и горизонтальной линейными связями. Таким образом, существует альтернатива выявления ложной связи в узле С – для её разрешения должен быть обозначен определённый порядок наложения связей на узел, после чего делается заключение о том, какая именно из двух вертикальных связей рассматривается как ложная. Не столь очевидно решение вопроса о лишних связях. Если в той же системе (см. рис. 1.36) последовательно оценивать каждую из внешних связей (кроме необходимой), оставшихся после исключения ложной, то формально все они окажутся лишними, причём их число превысит найденное количественным анализом число избыточных связей nизб. св. = – W (здесь W – за вычетом удалённых ложных связей). Возникновение этого противоречия свидетельствует о некорректности процедуры поодиночного последовательного перебора всех связей, не являющихся необходимыми, на предмет определения лишних. Правильный подход состоит в том, что выявлять лишние связи нужно все одновременно, т. е. группой, исходя из того, что для системы с уже исключёнными ложными связями число лишних связей nлишн. св. = nизб. св. = – W. Рассматриваются разные возможные варианты групп, состоящих каждая из nлишн. св. предположительно лишних связей; причем к этому моменту необходимые связи должны быть обнаружены, чтобы не быть случайно включёнными в анализируемую группу.
Алгоритм действий таков:
1) одновременно удаляются все связи, включённые в исследуемую группу;
2) в системе с удалённой группой предположительно лишних
связей оцениваются возможные перемещения и
по направлению каждой из связей группы;
3) при невыполнении критерия хотя бы для одной связи рассмотренная группа отвергается как недопустимая; далее формируется новая группа, для которой выполняются процедуры 1 – 3;
4) в качестве контроля проверяются связи, оставшиеся в системе после удаления группы связей, признанных лишними по результатам процедур 1 – 3, – все оставшиеся связи должны оказаться необходимыми.
Например, после удаления в системе, представленной на рис. 1.36, а, ложной связи 3 (других ложных связей нет, если не пренебрегать продольными деформациями стержней; в противном случае ложной будет и горизонтальная связь в узле С) система принимает вид по схеме рис. 1.36, г. Выполняя её количественный анализ, имеем: D = 2, П = 0, H =1, С = 0, Со = 6, тогда W = =
; nлишн. св.= – W = 2.
Рассматривая группу из двух связей, образующих среднюю шарнирную неподвижную опору, после их удаления получаем систему, изображённую на рис. 1.39. Очевидно, что без учёта деформаций стержней получается = 0 и
= 0, а в деформируемой системе
0 и
0 – значит, указанные две связи – лишние. Легко убедиться в том, что все остальные связи в системе (см. рис. 1.39) – необходимые.
Возможны и другие варианты групп лишних связей, например, две опорные связи в точке С или связь в точке К и горизонтальная связь в точке С. Общее количество исследуемых вариантов групп предположительно лишних внешних связей в рассматриваемой системе определяется как число сочетаний из пяти внешних связей (необходимая связь в точке А не учитывается) по две:
.
Среди них есть одна недопустимая – группа из связи в точке К и вертикальной связи в точке С (после их удаления получается 0 и
0 – рис. 1.40).
Если учитывать возможность отнесения к лишним связям наряду с внешними также и внутренних связей (например, трёх в припайке Р на рис. 1.36, а), то число вариантов групп становится значительно больше, возрастая до 28. Однако практической необходимости рассматривать все возможные варианты нет – достаточно проанализировать несколько наиболее характерных из них.
Более того, для большинства расчётных схем сооружений вообще можно не выполнять подробного исследования кинематической природы всех связей. Вместо этого структурный анализ сводится к воспроизведению последовательности операций по образованию (синтезу) системы из исходного набора несвязанных дисков наложением связей, предусмотренных расчетной схемой. При этом каждая операция заключается в соединении нескольких дисков (исходных или созданных путем укрупнения) с помощью определённой комбинации связей. Результатом очередного шага (операции) синтеза должно быть либо получение геометрически неизменяемой части системы (если это возможно обеспечить набором связей, имеющихся в расчётной схеме), либо выявление дефектов в расположении связей. В большинстве случаев разные ситуации в процессе синтеза системы могут быть сведены к применению типовых способов геометрически неизменяемого соединения элементов (дисков), изложенных в табл. 3 применительно к плоским системам.
Типовые способы геометрически неизменяемого соединения дисков
Типовые способы различаются набором соединяемых объектов (в порядке усложнения: «диск и точка», «два диска», «три диска», причём точка формально может рассматриваться как диск бесконечно малых размеров); связи – только необходимые.
Источник