Термоэлектрические холодильники: принцип работы
Длительная поездка на авто обязывает брать с собой в дорогу продукты питания. Чтобы не допустить их порчи в жару и оградить себя от неприятных последствий в виде отравлений, нужно поместить все необходимое в автохолодильник. Такая техника классифицируется на три разновидности. Автохолодильники бывают абсорбционными, компрессорными и термоэлектрическими. Последний вариант, как правило, представляет собой холодильник переносного типа. Термоэлектрические холодильники имеют множество преимуществ перед другими моделями. Основное их предназначение – это временное хранение продуктов. Рассмотрим принцип работы таких устройств и наиболее распространенные модели.
Преимущества автохолодильников
Большой плюс термоэлектрических холодильников – это низкий уровень шума во время работы. Это объясняется отсутствием движущихся и трясущихся элементов. Благодаря такой особенности их используют не только для авто. Иногда их установка уместна в квартире, на даче, в больничной палате. По сравнению с компрессорными и абсорбционными устройствами, термоэлектрические варианты расходуют гораздо меньше электроэнергии. Более того, они редко выходят из строя и отличаются высокой надежностью, а значит, можно избежать дополнительных расходов на их ремонт. Термоэлектрическим холодильникам не страшны встряски и вибрации, в силу чего их часто используют в автомобилях.
Принцип работы
Принцип работы устройств такого типа состоит в выкачивании тепловой энергии из изолированной от внешней среды холодильной камеры с целью понижения в ней температуры. В основе процесса лежит эффект «Пелтье» (выкачивание тепла электричеством из охлаждающего устройства). Эффект обрел такое название благодаря французскому ученому, который совершил это открытие еще в 19 веке. В устройствах такого типа предусмотрены модули, которые состоят из миниатюрных металлических кубов. Последние соединены между собой электричеством и хранятся вместе на физическом уровне.
На момент прохождения электрического тока сквозь кубы тепло передается от исходного материала к новому. Твердое состояние термоэлектрических модулей устройства способно передать тепло в значительном объеме.
Температурный режим
Принцип работы термоэлектрических холодильников основан на том, что поглощение тепла из помещенных в него продуктов происходит за счет большой холодной пластины. Термоэлектрические модули осуществляют его перемещение в рассеивающий тепло стабилизатор. Данная составляющая холодильника расположена под контрольной панелью. В этом участке небольшой вентилятор приводит к рассеиванию тепла из охлаждающего агрегата по воздуху.
Постоянная температура холодильника в жаркую погоду колеблется в пределах 10 °С. При подогреве температура повышается до +54-70 °С. После отключения от сети температура в камере может оставаться такой же на протяжении 8-10 часов.
Советы по использованию
Коэффициент полезного действия подобного охлаждения – 16-17%, поэтому термоэлектрические холодильники не способны охлаждать помещенную в них продукцию в быстром режиме. Основная функция устройств такого типа – сохранять продукты холодными, а не способствовать их охлаждению. Если сравнивать их с изотермическими контейнерами, то время хранения продуктов в них не ограничено, поскольку прибор бесперебойно получает подпитку.
Прежде чем начать эксплуатировать термоэлектрический холодильник, нужно предварительно охладить все, что будет в нем храниться. Необходимо также дать охладиться пустой камере. В некоторых моделях автохолодильников предусмотрено два режима работы. Они могут подогревать и охлаждать продукты. За счет функции подогрева данный холодильник лидирует среди компрессорных и абсорбционных. Если хорошо знать устройство термоэлектрических холодильников, можно подобрать наиболее подходящую модель с набором определенных технических параметров.
При выборе автохолодильника необходимо определиться с местом его расположения в автомобиле и только после этого совершать покупку. Необходимо расположить устройство в машине таким образом, чтобы на него не попадали прямые солнечные лучи. Поскольку термоэлектрический холодильник медленно набирает температуру, его следует включить перед поездкой заранее. Можно пойти и другим путем – охладить камеру, используя аккумуляторы холода. С этой целью запрещено использовать лед, потому как талая вода станет причиной появления коррозии на металлических элементах автохолодильника.
Как выбирать
Как правило, термоэлектрические холодильники для дома и автомобиля не могут похвалиться большой вместительностью. Их объем составляет 0,5-50 л. Бюджетные модели способны функционировать в режиме охлаждения и исключительно от бортовой сети. В дорогостоящих устройствах предусмотрена функция разогрева и возможность подсоединения к бытовой сети.
Выбирая холодильник термоэлектрического типа, важно определиться с такими параметрами:
- Объем. Автохолодильник вместительностью до 5 л идеален для автомобилистов, которые путешествуют самостоятельно. Такое устройство может вместить небольшое количество продукции и бутылок с напитками. Если предполагается поездка всей семьей или большой компанией, целесообразно предпочесть термоэлектрический холодильник, объем которого составит 30-40 л.
- Длительность поездок. Если агрегат нужен для поездок загород или передвижений на минимальные расстояния, лучшим решением станет приобретение изотермической сумки или контейнера.
- Температурный диапазон. Если холодильнику предстоит эксплуатироваться в жарких условиях, и разница в температурном режиме будет значительной, может понадобиться морозильная камера.
Отзывы
Если ссылаться на отзывы об термоэлектрических холодильниках, то владельцы таких устройств рекомендуют при выборе придерживаться следующих правил:
- Приобретать модель с защитным устройством, которое будет контролировать предельно допустимую разрядку аккумуляторной батареи автомобиля.
- Отдавать предпочтение холодильникам с достаточной длиной шнура (не менее 2 м).
- Выбирать устройство с надежно закрывающейся крышкой.
Источник
Термоэлектрический эффект и охлаждение
Эффективность применения термоэлектрических холодильников по сравнению с другими типами холодильных машин возрастает тем больше, чем меньше величина охлаждаемого объема. Поэтому наиболее рационально в настоящее время использование термоэлектрического охлаждения для холодильников бытового назначения, в охладителях пищевых жидкостей, кондиционерах воздуха, кроме того, термоэлектрическое охлаждение успешно используется в химии, биологии и медицине, метрологии, а также в торговом холоде (поддержание температуры в холодильных камерах), холодильном транспорте (рефрижераторы), и др. областях
В технике широко известен эффект возникновения термоЭДС в спаянных проводниках, контакты (места спаев) между которыми поддерживаются при различных температурах (эффект Зеебека). В том случае, когда через цепь двух разнородных материалов пропускается постоянный ток, один из спаев начинает нагреваться, а другой — охлаждаться. Это явление носит название термоэлектрического эффекта или эффекта Пельтье.
На рис. 1 показана схема термоэлемента. Два полупроводника n и m составляют контур, по которому проходит постоянный ток от источника питания С, при этом температура холодных спаев X становится ниже, а температура горячих спаев Г становится выше температуры окружающей среды, т. е. термоэлемент начинает выполнять функции холодильной машины. Температура спая снижается вследствие того, что под воздействием электрического поля электроны, двигаясь из одной ветви термоэлемента (m) в другую (n), переходят в новое состояние с более высокой энергией. Энергия электронов повышается за счет кинетической энергии, отбираемой от атомов ветвей термоэлемента в местах их сопряжений, в результате чего этот спай (X) охлаждается. При переходе с более высокого энергетического уровня (ветвь п) на низкий энергетический уровень (ветвь т) электроны отдают часть своей энергии атомам спая Г термоэлемента, который начинает нагреваться.
В нашей стране в конце 1940-х и начале 1950-х годов академиком А. Ф. Иоффе и его учениками были проведены очень важные исследования, связанные с разработкой теории термоэлектрического охлаждения. На базе этих исследований была впервые сконструирована и испытана серия охлаждающих устройств.
Энергетическая эффективность термоэлектрических холодильных машин значительно ниже эффективности других типов холодильных машин, однако простота, надежность и отсутствие шума делают использование термоэлектрического охлаждения весьма перспективным.
Экономичность термоэлемента, а также максимальное снижение температуры на спаях зависят от эффективности (добротности) полупроводникового вещества z, в которую входят удельная электропроводность σ, коэффициент термоЭДС α и удельная теплопроводность κ. Эти величины взаимосвязаны, так как зависят от концентрации свободных электронов или дырок. Такая зависимость представлена на рис. 2. Из рисунка видно, что электропроводность σ пропорциональна числу носителей n, термоЭДС стремится к нулю с увеличением n и возрастает при уменьшении n. Теплопроводность к состоит из двух частей: теплопроводности кристаллической решетки κp, которая практически не зависит от n, и электронной теплопроводности κэ, пропорциональной n. Эффективность металлов и металлических сплавов мала из-за низкого коэффициента термоЭДС, а в диэлектриках — из-за очень малой электропроводимости. По сравнению с металлами и диэлектриками эффективность полупроводников значительно выше, чем и объясняется их широкое применение в настоящее время в термоэлементах. Эффективность материалов также зависит от температуры.
Термоэлемент состоит из двух ветвей: отрицательной (n-тип) и положительной (р-тип). Так как материал с электронной проницаемостью имеет термоЭДС с отрицательным знаком, а материал с дырочной проводимостью — с положительным, то можно получить большее значение термоЭДС.
При увеличении термоЭДС растет z. Для термоэлементов в настоящее время применяют низкотемпературные термоэлектрические материалы, исходными веществами которых являются висмут, сурьма, селен и теллур. Максимальная эффективность z для этих материалов при комнатных температурах составляет: 2,6·10 -3 °С -1 для n-типа, 2,6·10 -1 °С -1 — для р-типа. В настоящее время Bi2Te3 применяют редко, поскольку созданные на его основе твердые растворы Bi2Te3-Be2Se3 и Bi2Te3-Sb2Te3 имеют более высокие значения z. Эти материалы впервые были получены и исследованы в нашей стране, и на их основе освоен выпуск сплавов ТВЭХ-1 и ТВЭХ-2 для ветвей с электронной проводимостью и ТВДХ-1 и ТВДХ-2 — для ветвей с дырочной проводимостью [1]. Твердые растворы Bi-Se применяют в области температур ниже 250 К. Максимального значения z = 6·10 -3 °С -1 достигает при Т≈80÷90 К. Интересно отметить, что эффективность этого сплава значительно повышается в магнитном поле.
Полупроводниковые ветви в настоящее время изготавливают тремя методами: методом порошковой металлургии, литьем с направленной кристаллизацией и вытягиванием из расплава. Метод порошковой металлургии с холодным или горячим прессованием образцов наиболее распространен.
В термоэлектрических охлаждающих устройствах применяют, как правило, термоэлементы, у которых отрицательная ветвь изготовлена методом горячего прессования, а положительная — методом холодного прессования.
Механическая прочность термоэлементов незначительна. Так, у образцов сплава Bi2Te3-Sb2Te3, изготовленных методом горячего или холодного прессования, предел прочности при сжатии составляет 44,6-49,8 МПа. Для повышения прочности термоэлемента между коммутационной пластиной 1 (рис. 3) и полупроводниковой ветвью 6 ставится демпфирующая свинцовая пластина 3; кроме того, применяют легкоплавкие припои 2, 4 и припой SiSb 5. Испытания показывают, что термоэлектрические устройства имеют виброударную стойкость до 20g, термоэлектрические охладители малой холодопроизводительности — до 250g.
Сравнение термоэлектрических охлаждающих устройств с другими способами охлаждения
Термоэлектрические охлаждающие устройства имеют ряд преимуществ по сравнению с другими типами холодильных машин. В настоящее время в системах кондиционирования воздуха на судах применяют теплоиспользующие или паровые холодильные машины. В холодное время года судовые помещения обогревают электро-, паро- или водонагревателями, т. е. применяют раздельные источники теплоты и холода. При помощи термоэлектрических устройств в теплое время года можно охлаждать помещения, а в холодное — обогревать. Режим обогрева изменяют на режим охлаждения путем реверса электрического тока. Кроме того, к преимуществам термоэлектрических устройств следует отнести: полное отсутствие шума при работе, надежность, отсутствие рабочего вещества и масла, меньшие массу и габаритные размеры при той же холодопроизводительности. Сравнительные данные по хладоновым машинам для провизионных камер на судах показывают, что при одинаковой холодопроизводительности масса термоэлектрической холодильной машины в 1,7-1,8 раза меньше. Термоэлектрические холодильные машины для систем кондиционирования воздуха имеют объем приблизительно в четыре, а массу в три раза меньше, чем хладоновые холодильные машины.
К недостаткам термоохлаждающих устройств следует отнести их низкую экономичность и повышенную стоимость. Экономичность термоэлектрических холодильных машин по сравнению с паровыми приблизительно на 20-50% ниже [1]. Высокая стоимость термоохлаждающих устройств связана с высокими ценами на полупроводниковые материалы. Однако существуют области, где уже теперь они способны конкурировать с другими типами холодильных машин. Например, начали применять термоэлектрические устройства для охлаждения газов и жидкостей. Примерами устройств этого класса могут служить охладители питьевой воды, воздушные кондиционеры, охладители реактивов в химическом производстве и др. Для таких холодильных машин образцовым циклом будет треугольный цикл Лоренца (см. рис. 4). Приближение к образцовому циклу достигается простым путем, так как для этого требуется только видоизменить электрическую схему коммутации, что не вызывает конструктивных трудностей. Это позволяет существенно, в некоторых случаях более чем вдвое, повысить эффективность термоэлектрических холодильных машин. Для реализации этого принципа в паровой холодильной машине пришлось бы применять сложную схему многоступенчатого сжатия.
Весьма перспективным может быть использование термоэлектрических устройств в качестве «интенсификатора теплопередачи». В тех случаях, когда из какого-либо небольшого пространства необходимо отвести теплоту в окружающую среду, а поверхность теплового контакта ограничена, располагаемые на поверхности термоэлектрические батареи могут значительно интенсифицировать процесс теплопередачи. Как показывают исследования [2], сравнительно небольшой расход электроэнергии способен существенно увеличить удельный тепловой поток. Можно интенсифицировать теплопередачу и без затраты электроэнергии. В этом случае необходимо замкнуть термобатарею. Наличие разности температур приведет к появлению термоЭДС Зеебека, которая и обеспечит питание термоэлектрической батареи. С помощью термоэлектрических устройств можно изолировать одну из теплообменивающихся сред, т. е. использовать ее в качестве совершенной тепловой изоляции.
Важное обстоятельство, также определяющее область, в которой термоэлектрические холодильные машины способны конкурировать с другими типами холодильных машин даже по энергетической эффективности, состоит в том, что уменьшение холодопроизводительности, например, паровых холодильных машин ведет к снижению их холодильного коэффициента. Для термоэлектрической холодильной машины это правило не соблюдается, и ее эффективность практически не зависит от холодопроизводительности. Уже в настоящее время для температур Тх = 0°С и Тк = 26°С и производительности несколько десятков ватт энергетическая эффективность термоэлектрической машины близка к эффективности паровой холодильной машины.
Широкое внедрение термоэлектрического охлаждения будет зависеть от прогресса в создании совершенных полупроводниковых материалов, а также от серийного производства эффективных в экономическом отношении термобатарей.
Источник