Термоэлектрический способ измерения температуры

Лекция 6

План:

6.1Термоэлектрический метод измерения температуры.

6.2 Характеристики термоэлектрических термометров

6.3 Типы термоэлектрических термометров

6.1 Термоэлектрический метод измерения температур основан на строгой зависимости термоэлектродвижущей силы (термо- ЭДС) термоэлектрического термометра от температуры.

К числу достоинств термоэлектрических термометров следует отнести:

1. достаточно высокую степень точности;

2. возможность центра­лизации контроля температуры путем присоединения нескольких термоэлектрических термометров через переключатель к одному измерительному прибору;

3. возможность автоматической записи измеряемой температуры с помощью самопишущего прибора;

4. воз­можность раздельной градуировки измерительного прибора и тер­моэлектрического термометра.

Существует два варианта включения измерительного прибора (милливольтметра) в цепь термоэлектрического термометра (рис. 4). а – в разрыв спая; б – в разрыв электрода.

а – в свободные концы; б – в термоэлектрод

6.2Поправка на температуру свободных концов термоэлектрического термометра. При градуировке термоэлектрического термометра температура свободных концов обычно поддерживается при постоянной темпе­ратуре t0, равной 0 °С. При измерении температуры в практических условиях температура свободных концов, в большинстве случаев, поддерживается постоянной, но не равной 0 °С.

Чтобы ввести поправку на температуру свободных концов при to ¹ 0, необходимо к Термо ЭДС, развиваемой термометром Е(t, to) прибавить ЭДС, развиваемую свободными концами е(to, 0) при отклонении to от 0 °С:

Основные требования, изъявляемые к термоэлектродным материалам.

1. Жаростойкость (определяет верхние температурные границы);

2. Механическая прочность;

3. Химическая инертность;

4. Термоэлектрическая однородность (при неоднородности развивается паразитная ЭДС);

5. Стабильность и вос­производимость термоэлектрической характеристики;

6. Однозначная, желательно близкая к линейной, зависимость термо-э. д. с. от тем­пературы;

7. Высокая чувствительность.

6.3 В зависимости от материала проводников термопары подразделяются на две группы: 1 – с электродами из благородных металлов и 2 – из неблагородных металлов.

Платинородийплатиновые (ТПП), (t = 300¸1600 °С), при­меняются для измерения температур в окис­лительной и нейтральной среде. Для измерения отрицательных температур ТПП не применяются, так как их термо-ЭДС в этой области меняется немонотонно.

Достоинства: высокая точность и вос­производимость термо-эдс.

Недостатки: высокая стоимость и низкая чувствительность.

ТПП в зависимости от их назначения разделяются на разновидности: эталонные ТПП-Э, образцовые ТПП-О и рабочие повышенной точности ТПП-РПТ и технические ТПП.

Платинородий-платинородиевые термоэлектрические термо­метры. t = 300 ¸ 1500 °С (кратковременно 1800 °С).

Достоинство: для ТПР нет необходимости вводить поправку, если их температура tо не превышает 100°С

Недостатки: дорого, не работают в восстановительной среде.

Термопары из неблагородных материалов используются для измерения температур во всех средах.

Хромель – копелевые термометры ТХК. t = -50 ¸ 600 °С.

Невысокий температурный предел при­менения объясняется тем, что копелевая проволока, содержащая медь, сравни­тельно быстро окисляется при высоких температурах, и вследствие этого про­исходит изменение термо-э. д. с.

Хромель-алюмелевые (Никельхромникельалюминиевые) термоэлектрические термометры типа ТХА. t = -200 ¸ 1000 °С (кратковременно 1300 °С).

Термоэлектриче­ские термометры ТХА обладают лучшей сопротивляемостью оки­слению, чем другие термометры из неблагородных металлов, при работе в воздушной среде.

Недостатки: Чувствительность к неоднородностям и механическим деформациям, возникающим при холодной обработке, в результате нарушается стабильность термоэлектрической характеристики.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Термоэлектрический метод измерения температур.

Общие сведения.

Термоэлектрический метод измерения температур основан на строгой зависимости термоэлектродвижущей силы (термо-э.д.с.) термоэлектрического термометра от температуры.

Термоэлектрические термометры широко применяются для измерения температуры до 2500 0 С в различных областях техники и в научных исследованиях. Они могут использоваться для измерения температуры от – 200 0 С, но в области низких температур термоэлектрические термометры получили меньшее распространение, чем термометры сопротивления.

К числу достоинств термоэлектрических термометров следует отнести достаточно высокую степень точности, возможность централизации контроля температуры путем присоединения нескольких термометров через переключатель к одному измерительному прибору, возможность автоматической записи измеряемой температуры с помощью самопишущего прибора, возможность раздельной градуировки измерительного прибора и термоэлектрического термометра.

ПРИНЦИП ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ТЕРМОПАРОЙ.

В основу измерения температур с помощью термоэлектрических термометров положены термоэлектрические явления, открытые Зеебеком в 1821 г. Применение этих явлений к измерению температур основано на существовании определенной зависимости между термо-э.д.с., устанавливающейся в цепи, составленной из разнородных проводников, и температурами мест их соединения.

Если взять цепь (рис.2-1), составленную из двух различных термоэлекрически однородных по длине проводников А и В (например, меди и платины), то при подогреве спая 1 в цепи появляется электрический ток, который в более нагретом спае 1 направлен от платины В к меди А, а в холодном спае 2 – от меди к платине. При подогреве спая 2 ток получает обратное направление. Такие токи называются термоэлектрическими. Электродвижущая сила, обусловленная неодинаковыми температурами мест соединения 1 и 2, называется термоэлектродвижущей силой, а создающей ее преобразователь – термоэлектрическим первичным преобразователем или термометром (употребляющееся название – термопара).

Для объяснения механизма возникновения термо-э.д.с. воспользуемся электронной теорией, которая основывается на представлении о наличии в металлах свободных электронов. В различных металлах плотность свободных электронов (число электронов в единицу объема) неодинакова. Вследствие этого в местах соприкосновения двух разнородных металлов, например, в спае (рис.2-1), электроны будут диффундировать из металла А в металл В с меньшей плотностью свободных электронов в большем количестве, чем обратно из металла В в металл А. Возникающее при этом в месте соединения электронное поле будет препятствовать этой диффузии, и когда скорость диффузионного перехода электронов станет равна скорости из обратного перехода под влиянием установившегося определенного поля, наступит состояние подвижного равновесия. При таком состоянии между металлами А и В возникает некоторая контактная разность потенциалов. Так как плотность свободных электронов зависит также и от температуры места соединения металлов А и В, то в месте возникновения этих проводников при любых температурах возникает э.д.с.

Читайте также:  Капитальное строительство формы способы

, (П.1)

называемая контактной термо-э.д.с., значение и знак которой зависят от природы металлов А и В и температуры t места их соприкосновения.

В замкнутой цепи (рис.2-1) из двух разнородных проводников А и В (например, меди и платины), когда , появляется, как было сказано выше, термоток. Направление этого тока в спае 2 определяет знак как самого проводника, так и термо-э.д.с. Положительным называют тот термоэлектрод, от которого ток идет с спае, имеющем температуру . Отрицательным – к которому ток идет в том же спае. Так как в рассматриваемой цепи ток направлен в спае 2 от А к В (от меди к платине), то термоэлектрод А – термоположительный, а В – термоотрицательный. Порядок написания термоэлектродов АВ в индексе символа контактной термо-э.д.с. указывает на направление тока в спае 2 и поэтому термоэлектрод, написанный в индексе первым – положительный, а вторым – отрицательный.

При изменении температуры спаев 1 и 2 (рис.2-1) (), направление термотока в спаях этой цепи изменяется, но знак термоэлектрода А при этом остается прежним, так как в спае 1 ток, как и раньше, направлен от А к В.

На основании закона Вольта в замкнутой цепи, состоящей из двух разнородных проводников А и В, когда температуры мест их соединения одинаковы () и соответствуют посторонние э.д.с., термоток не возникает. Вследствие этого необходимо принять , что возникающие при этом контактные термо-э.д.с. в местах соеденения 1 и 2 равны между собой, но различны по знаку, и поэтому суммарная термо-э.д.с. Е цепи равна нулю:

(П.2)

. (П.3)

Следует заметить, что закон (П.2) является прямым следствием второго закона термодинамики, так как если бы сумма конкатных темро-э.д.с. в подобной цепи не равнялась нулю, то в цепи был бы термоток. Если бы в цепи имелся термоток, то часть цепи стала бы нагреваться, а другая – охлаждаться, это означало бы, что отвод и подвод тепла осуществляется без затраты энергии. Это противоречит второму закону термодинамики и приводит к выводу, что сумма контактных термо-э.д.с. в такой цепи равна нулю.

(П.4)

(П.5)

Сказанное выше приводит к выводу, что термо-э.д.с., возникающая в термоэлектрической цепи (рис.2-1), зависит лишь от температуры мест соединения 1 и 2 различных термоэлектрически однородных по всей длине проводников А и В и от их природы и не может зависеть от распределения температур в каждом ее отдельном термоэлектрически однородном проводнике.

ЛАБОРАТОРНАЯ РАБОТА № 4

Определение коэффициента поверхностного натяжения жидкости методом Кантора-Ребиндера.

Приборы и принадлежности: установка для определения коэффициента поверхностного натяжения, термометр, электроплитка, сосуд для воды, стакан, исследуемые жидкости.

Цель работы: изучение температурной и концентрационной зависимостей коэффициента поверхностного натяжения

Энергетическое состояний молекул в поверхностном слое и внутри объема жидкости различны. Поэтому поверхностному слою можно приписать так называемую поверхностную энергию Е, которая пропорциональна площади поверхности:

(1)

Коэффициент пропорциональности α называется коэффициентом поверхностного натяжения.

Понятие коэффициента поверхностного натяжения можно ввести и иначе. Энергетически выгодным является состояние системы с минимумом поверхностной энергии, следовательно, по касательной к поверхности действует сила, стремящаяся уменьшить площадь поверхности, называемая силой поверхностного натяжения. Эта сила пропорциональна длине отрезка L, лежащего на поверхности

. (2)

Если поверхность жидкости искривлена, то наличие силы поверхностного натяжения приводит к появлению избыточного давления, которое обычно называют Лапласовским давлением. Лапласовское давление определяется из соотношения: (3)

где R1 и R2 – радиусы кривизны двух взаимно перпендикулярных нормальных сечений поверхности жидкости. Для сферической поверхности, очевидно,

(4)

где R радиусы кривизны сферической поверхности.

Измерив Лапласовское давление, можно определить коэффициент поверхностного натяжения.

Источник

Измерение температуры

Одним из важнейших физических параметров, который чаще всего наблюдается и контролируется, будь то повседневная бытовая жизнь человека, производственные циклы или лабораторные исследования, является температура.

Температурой — называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

В соответствии с Международной практической температурной шкалой 1968 г. основной температурой является термодинамическая температура, единица которой — Кельвин (К), но на практике чаще применяется температура Цельсия, единица которой — градус (С), равный Кельвину. между температурой Цельсия и термодинамической температурой существует следующее соотношение:

t, С=Т, К-273,15

Для изменения температур применяется контактные и бесконтактные методы. Для реализации контактных методов измерения применяются:

термометры расширения

термопреобразователи

  • термосопротивления (проводниковые и полупроводниковые)
  • термоэлектрические преобразователи

Бесконтактные измерения температуры осуществляются пирометрами (квазимонохроматическими, спектрального отношения и полного излучения).

Контактные методы измерения более просты и точны, чем бесконтактные. Но для измерения температуры необходим непосредственный контакт с измеряемой средой и телом. И в результате этого может возникать, с одной стороны, искажение температуры среды в месте измерения и с другой несоответствие температуры чувствительного элемента и измеряемой среды.

Читайте также:  Способ уведомления собственников помещений

Серийно выпускаемые термометры и термопреобразователи охватывают диапазон температур от — 260 до 2200°С и кратковременно до 2500°С. Бесконтактные средства измерения температуры серийно выпускаются на диапазон температур от 20 до 4000°С.

В таблице 1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения.

Термометрическое свойство Наименование устройства Пределы длительного применения, 0 С
Нижний Верхний
Тепловое расширение Жидкостные стеклянные термометры -190 600
Изменение давления Манометрические термометры -160 60
Изменение электрического сопротивления Электрические термометры сопротивления. -200 500
Полупроводниковые термометры сопротивления -90 180
Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные. -50 1600
Термоэлектрические термометры (термопары) специальные 1300 2500
Тепловое излучение Оптические пирометры. 700 6000
Радиационные пирометры. 20 3000
Фотоэлектрические пирометры. 600 4000
Цветовые пирометры 1400 2800

Термометры стеклянные

Принцип действия основан на зависимости объемного расширения жидкости от температуры. Отличаются высокой точностью, простотой устройства и дешевизной. Однако стеклянные термометры хрупки, как правило, не ремонтопригодны, не могут передавать показания на расстояние.

Основными элементами конструкции являются резервуар с припаянным к нему капилляром, заполненные частично термометрической жидкостью, и шкала.

Конструктивно различаются палочные термометры со шкалой, вложенной внутрь стеклянной оболочки. У палочных термометров шкала наносится непосредственно на поверхность толстостенного капилляра. У термометров с вложенной шкалой капилляр и шкальная пластина с нанесенной шкалой, заключены в защитную оболочку, припаянную к резервуару.

Стеклянные термометры расширения выпускаются для измерения температур от -100 до 600°С.

Выпускаются также ртутные электроконтактные термометры, предназначенные для сигнализации или поддержания заданной температуры. Термометры выпускаются с заданным постоянным контактом (ТЗК) или с подвижным контактом (ТПК).

Точность показаний термометров зависит от правильности их установки. Важнейшим требованием, предъявляемым при установке, является обеспечение наиболее благоприятных условий притока тепла от измеряемой среды к термобаллону и наименьший отвод тепла от остальной части термометра во внешнюю среду. Большей частью термометры устанавливают в защитную оправу.

Рисунок 1. Стеклянные термометры

Рисунок 2. Электроконтактные термометры

Манометрические термометры

Манометрические термометры предназначены для непрерывного дистанционного измерения температуры жидких и газообразных нейтральных сред в стационарных условиях.

Принцип действия основан на измерении давления (объема) рабочего вещества в замкнутом объеме в зависимости от температуры чувствительного элемента. Основными частями манометрических термометров являются термобаллон (чувствительный элемент), капилляр и деформационный манометрический преобразователь, связанный со стрелкой прибора.

Рисунок 3. Схема манометрического термометра

В зависимости от агрегатного состояния вещества, заполняющего систему, манометрические термометры делятся на жидкостные, газовые и парожидкостные (конденсатные). В качестве заполнителей термосистем применяются: в газовых манометрических термометрах — азот, в жидкостных — полиметилоксановые жидкости, в парожидкостных -ацетон, метил хлористый, фреон.

Измерение температуры контролируемой среды воспринимается заполнителем через термобаллон и преобразуется в изменение давления, под действием которого манометрическая трубчатая пружина с помощью тяги и сектора перемещает стрелку относительно шкалы.

Схема манометрического термометра

В зависимости от выполняемых функций манометрические термометры разделяются на показывающие, самопишущие, комбинированные, бесконтактные, с наличием устройств для телеметрической передачи, сигнализации, регулирования или без них.

В зависимости от способа соединения термобаллона с корпусом, термометры могут быть местные и дистанционные. В зависимости от формы диаграммы и поля записи, самопишущие термометры подразделяют на дисковые, ленточные. В зависимости от типа механизма для передвижения диаграммных лент самопишущие термометры изготовляют с часовым или электрическим приводом.

Достоинством манометрических термометров являются: возможность измерения температуры без использования дополнительных источников энергии, сравнительная простота конструкции, возможность автоматической записи показаний, взрывобезопасность, нечувствительность к внешним магнитным полям.

К недостаткам относятся: относительно невысокая точность измерения, трудность ремонта при разгерметизации измерительной системы, низкая прочность капилляра, небольшое расстояние дистанционной передачи показаний, значительная инерционность.

Основные типы манометрических термометров:

— ТПГ — 100 Эк, ТПГ- 100Сг -газовый показывающий сигнализирующий;

— ТКП — 100 , ТКП — 160 -конденсационный показывающий;

— ТЖП — 100 — жидкостной показывающий;

— ТГП — 100 — газовый показывающий.

Термопреобразователи сопротивления

Термопреобразователи сопротивление применяются для измерения температур а пределах от -260 до 750°С. Принцип действия основан на свойстве проводника изменять свое электрическое сопротивление с изменением температуры. Основными частями термопреобразователя сопротивления являются: чувствительный элемент, защитная арматура и головка преобразователя с зажимами для подключения и соединительных проводов. Чувствительные элементы медных термопреобразователей представляют собой проволоку, покрытую эмалевой изоляцией, которая бифилярно намотана на каркас, либо без каркаса, помещенную в тонкостенную металлическую оболочку. Чувствительный элемент помещается в защитную арматуру.

Платиновая проволока не может быть покрыта слоем изоляции. Поэтому платиновые спирали располагают в тонких каналах керамического каркаса, заполненных керамическим порошком. Этот порошок выполняет функции изолятора, осуществляет фиксацию положения спиралей в каналах и препятствует межвитковому замыканию.

Термопреобразователи сопротивления выпускаются для измерений температур в диапазоне от -260 до 1100°С следующих исполнений: погружаемые и поверхностные, стационарные и переносные; негерметичные и герметичные; обыкновенные, пылезащищенные, водозащищенные, взрывобезопасные, защищенные от агрессивных сред и других внешних воздействий; малоинерционные, средней и большой инерционности; обыкновенные и виброустойчивые; одинарные и двойные; 1 — 3 классов точности.

Выпускаются термопреобразователи сопротивления следующих номинальных статических характеристик преобразования: платиновые -10П, 50П, 100П, медные -10М, 50М, 100М. Число в условном обозначении характеристики показывает сопротивление термопреобразователя при 0°С.

К числу достоинств следует отнести высокую точность и стабильность характеристики преобразователя, возможность измерять криогенные температуры, возможность осуществления автоматической записи и дистанционной передачи показаний.

Читайте также:  Кельтский узор как нарисовать простой способ

К недостаткам следует отнести больше размеры чувствительного элемента, не позволяющие измерять температуру в точке объекта или измеряемой среды, необходимость индивидуального источника питания, значительная инертность.

Термоэлектрические преобразователи

Термометры термоэлектрические представляют собой чувствительные элементы в виде двух проводов из разнородных металлов или полупроводников со спаянными концами. Действие термоэлектрического преобразователя основано на эффекте Зеебека — появлении термоЭДС в контуре, составленном из двух разнородных проводников, спаи которых нагреты до различных температур. При поддержании температуры одного из спаев постоянной можно по значению термоЭДС судить о температуре другого спая. Спай, температура которого должна быть постоянной, принято называть холодным, а спай, непосредственно соприкасающийся с измеряемой средой — горячим.

В наименовании термоэлектрического преобразователя всегда принято ставить на первое место название положительного термоэлектрода, а на второе — отрицательного.

Преобразователи термоэлектрические изготовляют следующих типов:

— ТВР — термопреобразователь вольфрамрениевый

— ТПР — термопреобразователь платинородиевый

— ТПП — термопреобразователь платинородий-платиновый

— ТХА — термопреобразователь хромель-алюмелевый

— ТХК — термопреобразователь хромель-копелевый

— ТМК — термопреобразователь медь-копелевый

— По способу контакта с измеряемой средой — погружаемые, поверхностные.

— По условиям эксплуатации — стационарные, переносные, разового применения, многократного применения, кратковременного применения.

— По защищенности воздействия окружающей среды — обыкновенные, водозащитные, защищенные от агрессивных сред, взрывозащищенные, защищенные от других механических воздействий.

— По герметичности к измеряемой среде — негерметичные, герметичные.

— По числу термопар — одинарные, двойные тройные.

— По числу зон — однозонные, многозонные.

Если температуру холодного спая поддерживать постоянной, то термоЭДС будет зависеть только от степени нагрева рабочего конца термопреобразователя , что позволяет отградуировать измерительный прибор в соответствующих единицах температуры . В случае отклонения температуры свободных концов от градуировочного значения, равного 0°С, к показаниям вторичного прибора вводиться соответствующая поправка. Температуру свободных концов учитывают для того, чтобы знать величину поправки.

Для вывода свободных концов термопреобразователя в зону с постоянной температурой служат удлиненные термоэлектродные провода. Они должны быть термоэлектрически идентичны термоэлектродам термопреобразователя.

Существует два способа подбора компенсационных проводов. Первый способ — подбирают провода, которые в паре с соответствующим электродом имеют термоЭДС. Его применяют в тех случаях, когда необходимо производить измерения с повышенной точностью. В случае недефицитных материалов и удовлетворительных эксплуатационных свойств провода изготовляют из тех же материалов, что и подключаемая термопара.

Таким образом, чтобы определить измеряемую температуру среды с помощью термоэлектрического преобразователя, необходимо выполнить следующие операции:

  • измерить термоЭДС в цепи преобразователя;
  • определить температуру свободных концов;
  • в измеряемую величину термоЭДС ввести поправку на температуру свободных концов;
  • по известной зависимости термоЭДС от температуры определить измеряемую температуру среды.

В зависимости от материала термоэлектродов различают: термопреобразователи с металлическими термопарами из благородных и неблагородных металлов и сплавов; термопреобразователи с термопарами из тугоплавких металлов и сплавов.

Термопары из благородных металлов, обладая устойчивостью к высоким температурам и агрессивным средам, а также постоянной термоЭДС, широко пользуются для замера высоких температур в промышленных и лабораторных условиях. Термопары из неблагородных металлов и сплавов применяются доя измерения температур до 1000°С. Достоинством этих термопар является сравнительно небольшая стоимость и способность из развивать большие термоЭДС.

Для защиты термоэлектродов от механических повреждений и агрессивного действия среды, а также для удобства установки на технологическом оборудовании применяют защитную арматуру. Материал и исполнение арматуры могут быть различными в зависимости от назначения и области применения. Наиболее широко в качестве материалов используют высоколегированные стали и коррозионно — стойкие, жаропрочные и жаростойкие сплавы на основе железа, никеля, хрома и добавок алюминия, кремния, марганца.

Бесконтактное измерение температуры, основные понятия и законы излучения

О температуре нагретого тела можно судить на основании измерения параметров его теплового излучения, представляющего собой электромагнитные волны различной длины. Чем выше температура тела, тем больше энергии оно излучает.

Термометры, действие которых основано на измерении теплового излучения, называют пирометрами. Они позволяют контролировать температуру от 100 до 6000 °С и выше. Одним из главных достоинств данных устройств является отсутствие влияния измерителя на температурное поле нагретого тела, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Поэтому данные методы получили название бесконтактных.

На основании законов излучения разработаны пирометры следующих типов:

  1. пирометр суммарного излучения (ПСИ) – измеряется полная энергия излучения;
  2. пирометр частичного излучения (ПЧИ) – измеряется энергия в ограниченном фильтром (или приемником) участки спектра;
  3. пирометры спектрального отношения (ПСО) – измеряется отношение энергии фиксированных участков спектра.

В зависимости от типа пирометра различаются радиационная, яркостная, цветовая температуры.

Радиационной температурой реального тела Тр называют температуру, при которой полная мощность АЧТ равна полной энергии излучения данного тела при действительной температуре Тд.

Яркостной температурой реального тела Тя называют температуру, при которой плотность потока спектрального излучения АЧТ равна плотности потока спектрального излучения реального тела для той же длины волны (или узкого интервала спектра) при действительной температуре Тд.

Цветовой температурой реального тела Тц называют температуру, при которой отношения плотностей потоков излучения АЧТ для двух длин волн и равно отношению плотностей потоков излучений реального тела для тех же длин волн при действительной температуре Тд.

Источник

Оцените статью
Разные способы