- Разрушение бетона: способы и инструкции
- В каких случаях разрушают бетонные сооружения?
- Методы разрушения бетона
- Простые механические способы
- Химические средства
- Когда применяются химические составы?
- Использование кислой смеси
- Применение порошкообразного состава
- Выводы
- Термический способ разрушения бетона
- ХИМИЧЕСКИЕ ФАКТОРЫ
- ФИЗИЧЕСКИЕ ФАКТОРЫ
- МЕХАНИЧЕСКИЕ ФАКТОРЫ
- ОСНОВНЫЕ ВИДЫ ДЕФЕКТОВ
- ОСНОВНЫЕ ВИДЫ ТРЕЩИН
- ХАРАКТЕРИСТИКИ ПОВРЕЖДЕНИЙ
Разрушение бетона: способы и инструкции
Бетон традиционно применяется при строительстве объектов. Многим известно, как приготовить качественную бетонную смесь и выполнить заливку фундамента. В ряде случаев возникает необходимость выполнить демонтаж бетонной конструкции. Специалистам по строительству приходится задумываться, как химическим способом разрушить бетон, так как не всегда имеется возможность применить специальную технику, взрыв или механические средства разрушения.
Сегодня существует ряд недорогих, проверенных «тихих» химических методов разрушения бетонного монолита. Применяя их, можно избежать механического воздействия на массив и, в стесненных условиях, выполнить разрушение армированного бетона без шума, вибрации, пыли и осколков.
Бетон — материал, используемый в строительной отрасли
Используя проверенные технические решения, можно выполнить разрушение бетона за ограниченное время, ликвидировать аварийные, утратившие актуальность, строения и начать возведение новых объектов. Рассмотрим известные методы нарушения целостности бетона. Остановимся более подробно на химических способах разрушения.
В каких случаях разрушают бетонные сооружения?
При выполнении современных строительных мероприятий часто возникают ситуации, когда необходимо нарушить целостность бетона. Старые железобетонные конструкции уничтожают, если необходимо:
- демонтировать часть старого основания;
- снести ветхое здание;
- выполнить перепланировку;
- осуществить постройку нового строения;
- заложить новый фундамент.
Методы разрушения бетона
Применяемые в строительстве технологии, направленные на нарушение целостности бетонного массива, можно условно разделить на две категории:
- Методы механического воздействия, предусматривающие использование тяжёлого ударного инструмента, перфораторов, отбойных молотков, тяжелых кувалд, применение специального алмазного инструмента, а также паяльных ламп и воды.
В ходе проведения строительных или ремонтных работ приходится уничтожать старые изделия из железобетона, чтобы возвести новые строения
- Способы химического разрушения, позволяющие разрушить бетон, с применением специального порошка, значительно расширяющегося в объеме при определенных условиях, или кислой смеси.
С целью принятия решения об использовании наиболее подходящего метода нарушения целостности бетона, познакомимся с ними более детально.
Простые механические способы
Методы разрушения бетона с помощью механических средств отличаются экономичностью, доступностью, однако, в ряде случаев, требуют значительного времени для получения необходимого эффекта:
- эффективность применения кувалды или мощного перфоратора зависит от физической подготовки рабочего, который осуществляет разрушение конструкции;
- использование воды и паяльной лампы позволяет постепенно разрушать материал путем локального нагрева поверхности и полива ее охлажденной водой. Через несколько циклов нагрева появится сеть трещин, с которыми можно легко справиться, используя кувалду или отбойный молоток;
- применение алмазного инструмента положительно себя зарекомендовало при работе с железобетонными конструкциями, независимо от их размеров;
- выполнение группы отверстий, в которые вбивается острая пика от перфоратора, позволяет отколоть крупные куски от бетонного монолита;
Механическим способом бетонное изделие разрушается на куски при помощи кувалды
- постепенное увлажнение деревянных пробок, вставленных с натягом в расположенные по определенной конфигурации отверстия, позволяет расколоть монолит после их расширения. Расширяясь до 15% собственного объема, древесина разрывает по необходимой линии бетонные глыбы, однако для получения эффекта необходимо не меньше 10 дней.
Таковы механические методы разрушения, требующие значительной физической подготовки персонала и времени для достижения требуемого эффекта.
Химические средства
К химическим средствам, позволяющим демонтировать бетонные конструкции, относятся:
- Смеси с повышенной кислотностью, которые за ограниченное время растворяют бетон, нарушают его целостность и обеспечивают возможность удаления кирпичей, остатков бетона. Основой кислотных составов является концентрированная соляная кислота и специальные ингибиторы, глубоко проникающие в массив, расширяющие его. Использование кислотных составов требует обязательного применения средств защиты для работающего персонала.
- Порошки специального назначения, обладающие увеличенным коэффициентом расширения, которыми заполняются предварительно подготовленные отверстия. Реализация процесса требует значительных финансовых затрат, однако позволяет достичь требуемого результата в течение суток, используя при этом минимальное количество рабочей силы.
Химические средства используют для разрушения прочных строительных материалов, поскольку при их использовании исключены возгорания и взрыв
Когда применяются химические составы?
Технологии ликвидации цементных и бетонных конструкций положительно зарекомендовали себя на практике. Химические методы обладают рядом положительных моментов, позволяющих:
- выполнить демонтаж в стесненных условиях действующего объекта;
- вывести из эксплуатации постройку без применения тяжелой техники в условиях городской застройки;
- ликвидировать бетонную конструкцию без шумовых эффектов, высокой концентрации пыли;
- осуществить ликвидацию бетонных конструкций без применения алмазной резки.
Использование кислой смеси
Ликвидация прочных железобетонных конструкций часто производится с использованием кислой смеси, принцип действия которой основан на разрушении кислотой бетона. Использование соляной кислоты, которая растворяет массив, позволяет размягчить твердое вещество. Для этого достаточно обработать соляной кислотой разрушаемую поверхность.
Выполнение работ следует осуществлять с особой степенью осторожности, чтобы агрессивный раствор не попал на открытые части тела или слизистую оболочку. В состав разрушающей смеси вводятся специальные ингибиторы, которые, смешиваясь с кислотой, образуют раствор с высокой степенью агрессивности.
Данная химическая технология позволяет не только размягчить массив, но и, в дальнейшем, удалить бетон, извлечь из него кирпич, блоки. Если под воздействием одноразовой обработки массив не потерял прочность, процесс выполняется повторно.
Специалисты способны демонтировать бетонные изделия без взрывов и существенных усилий — применяя соляную кислоту
Применение порошкообразного состава
Технология применения химических составов предусматривает возможность использования порошка НРС-1, позволяющего выполнить демонтаж утратившего прочность основания здания. Принцип действия порошкообразного состава основан на значительном увеличении его в бетонной массе. Основным действующим веществом является оксид кальция, процентное содержание которого влияет на величину давления, оказываемого суспензией на поверхность замкнутого пространства шпура.
Для реализации метода в бетонном монолите сверлится группа глухих шпуров, заполняемых специально подготовленной влажной массой данного реагента. Что представляет собой химическая смесь? НРС расшифровывается, как невзрывное разрушающее средство, и является специальным цементным составом, который значительно расширяется в объеме. Применение состава не требует специальных мер безопасности, так как он не горит, не взрывается при выполнении работ. Достоинством реагента является:
- Отсутствие шума и вибрации при выполнении работ.
- Минимальное количество строительного мусора, осколков.
- Высокая степень разрушения при силе давления более 50 мегапаскалей.
- Безопасность для окружающих.
- Отсутствие необходимости в применении электрической энергии или сжатого воздуха.
Технология использования порошка не представляет значительных сложностей, реализуется при положительной температуре окружающей среды следующим образом:
- просверлите в бетонной конструкции группу отверстий диаметром порядка 80 мм, соблюдая интервал между ними до 250 мм. При уменьшении интервала между шпурами возрастает эффективность, интенсивность рыхления массива;
- подготовьте суспензию в соответствии с инструкцией производителя, добавляя на килограмм порошка 270-300 миллилитров обычной воды;
- тщательно размешайте состав на протяжении 10 минут;
- заполните шпуры полученным составом до краев;
- обеспечьте возможность застывания, кристаллизации состава и через сутки можете приступать к извлечению растрескавшегося массива.
Выводы
Среди множества методов разрушения бетонных конструкций химические средства занимают не последнее место, так как зарекомендовали себя эффективным, проверенным средством. При наличии финансовых ресурсов их применение оправдано и позволяет достичь требуемого эффекта за ограниченное время.
Ознакомившись с тем, как химическим способом разрушить бетон, вы можете самостоятельно принять решение, какой из вариантов вам больше подходит и наиболее эффективен.
Источник
Термический способ разрушения бетона
Рассмотрим причины разрушения бетона и способы их решения или восстановления.
Причины можно разделить на несколько групп:
- Химические
- Физические
- Механические
- Дефекты и трещины
ХИМИЧЕСКИЕ ФАКТОРЫ
Основные разрушения бетона происходят от воздействия внешней среды и воздействия сульфатов, хлоридов и щелочей возникающих в процессе химических реакций наполнителей и вяжущих составов.
В конструкциях подвергающихся атмосферному влиянию, углекислота вызывает формирование карбоната кальция, в гидравлических сооружениях под его воздействием в составе воды наблюдается выщелачивание, ему подвержены вяжущие материалы.
Образование карбоната кальция происходит в процессе трансформации извести под воздействием углекислоты. Его концентрация зависит от окружающих внешних условий, эксплуатации сооружения и уровня промышленного загрязнения. При воздействии карбонатов на бетон в нем понижается уровень щелочной среды, что в свою очередь ведет к разрушению защитной пленки арматурных стержней и агрессивному воздействию на них влаги и кислорода, это приводит к агрессивной коррозии метала и новообразований вокруг арматурных стержней. Бетон в этих местах начинает вспучиваться, отслаиваться и даже полностью отваливаться. Появляются новые пути доступа кислорода и влаги, в глубь бетонной конструкции, что в свою очередь увеличивает и площадь, и глубину повреждений. Карбонизация наносит бетонным сооружениям исключительный вред.
Диагностика разрушений бетона карбонатами основана на цветовом тесте фенолфталеином. После нанесения 1% раствора фенолфталеина, не карбонизированный бетон краснеет, карбонизированный не меняет цвет.
Выщелачивание бетона такой же процесс, но проходит в присутствии влаги и представляет собой удаление цементного камня, разрушение усиливается под воздействием воды содержащей в себе углекислоту, серную кислоту органического происхождения.
Диагностика выщелачивания бетона состоит в визуальном обследовании, иных методов нет. При обследовании будут видны заполнители без цементного камня.
Разрушения сульфатами происходит от естественных примесей, таких как гипс и ангидриды. Из-за разницы размеров частиц в заполнителях и ускорителях, что в последствии приводит к образованию эттригита и растрескиванию поверхностного слоя бетона.
Диагностика разрушений от воздействия сульфатов проводится в лабораторных условиях и состоит в получении дифрактограммы в рентгеновском спектре.
Разрушение хлоридами наблюдается при воздействии на бетон морской воды, солей и антиобледенителей. При проникновении хлора в бетон до арматурных стержней происходит растворение пассивирующей пленки оксидов железа и начинается процесс коррозии. Скорость проникновения хлоридов в тело бетона зависит от концентрации хлоридов, проницаемости бетона и влажности. Как только начинается процесс коррозии, начинается разрушение бетона по нарастающей, из-за отслоений будут образовываться новые пути проникновения агрессивных веществ. Концентрация хлоридов поддерживающая коррозию, прямо пропорциональна рН бетона, в связи с чем можно связать разрушение из-за образования карбонатов и разрушения хлоридов в единый аспект и протекают часто параллельно.
Диагностика разрушения хлоридами проводится несколькими методами, химический анализ выявляет весовую концентрацию хлоридов в цементе и цветовой тест с использованием флуоресценция и нитрата серебра и дифракционный анализ в рентгеновском спектре.
Более доступный метод, цветовой тест. Проводится обработкой бетона раствором флуорецеина и нитрата серебра. После обработки раствором, происходит окрашивание бетона, подверженного разрушению сульфатами в светло-розовый цвет, а не подверженного в темный.
Взаимодействие щелочей цемента с заполнителями, еще одно из химических разрушений бетона , выражается во взаимодействие цемента с заполнителями, которое приводит к серьезным разрушениям. Некоторые заполнители содержат реакционноспособный кремнезем, который взаимодействует со щелочами калия и натрия находящихся в цементе или их солями, которые поступают из вне в форме хлоридов. В результате реакции образуется гель, который расширяется в присутствии воды или влаги и разламывает бетон вокруг этих образований. В результате реакции образуются силикаты натрия и гидратированного калия, обладающих большой объемистостью. При этом на поверхности бетона появляются трещины, подрыв участков бетона, вспучивание. Ускорить реакцию способна дополнительная влажность, а так же циклы замерзания и оттаивания.
Признаки взаимодействия щелочей цемента с заполнителями бетона можно определить визуально и с помощью цветового теста.
Визуально характерно упорядоченное растрескивание напоминающее паутину, набухание. Цветовой тест проводится с помощью кобальтинитрита натрия и позволяет выявить гель, возникающий в ходе реакции щелочей цемента и кремнеземом, в результате чего гель окрашивается в желтый цвет.
ФИЗИЧЕСКИЕ ФАКТОРЫ
Замерзание и оттаивание, это когда вода проникает внутрь бетона и впоследствии замерзания создает напряжение взламывая бетон. Чтобы ограничить такие последствия необходимо сократить капиллярную микропористость на стадии изготовления бетона добавлением морозостойких заполнителей и воздухововлекающих добавок, которые поддерживают соотношение между водой и цементом.
Высокие температуры так же приводят к разрушительному эффекту на бетон. Разрушение возникают в результате разного расширения бетона и арматуры, разрыва заполнителя с вяжущим, при быстром остывании в результате воздействия воды при пожаре или иных обстоятельствах образование извести, быстрой конденсации пара, что приводит к разрывам и растрескиванию.
Усадка бетона бывает двух типов, пластическая и гигрометрическая.
Пластическая усадка происходит в пластичной стадии бетона ( в момент укладки бетона или первых дней после нее), причина, быстрое выделение влаги в окружающую среду. При пластической усадке на его поверхности образуются микротрещины, трещины, провалы.
Избежать пластическую усадку довольно просто, укрыть свежеуложенный бетон водонепроницаемой пленкой, при отсутствии возможности укрытия орошение в течении нескольких дней водой или нанесение материалов создающего защитную пленку.
Гигрометрическая усадка происходит уже после схватывания бетона в первые несколько месяцев. Избежать гигрометрическую усадку помогают добавки снижающие водоцементное соотношение между инертными материалами и цементом, одним словом, чем меньше воды в свежеприготовленном бетоне, тем меньше в последующем усадка.
МЕХАНИЧЕСКИЕ ФАКТОРЫ
Истирание, когда бетон подвергается постоянным нагрузкам твердых частиц, механических и пешеходных нагрузок и зависит от характеристик материалов из которых состоит бетон. В основном истиранию подвержены бетонные полы.
Стойкость к истиранию можно повысить пропорцией между водой и цементом или путем внесения в верхний слой бетона специальных цементов с твердыми добавками путем втирания, или специальных полимеров.
Ударное воздействие, разрушение в результате интенсивных ударных нагрузок, движения механических транспортных средств, ударов. Так как бетон хрупкий материал, кромки на швах и стыках надламываются.
Чтобы повысить ударостойкость применяется более прочный бетон армированный стальными волокнами, что способствует равномерному распределению ударного воздействия и правильный подбор шовного герметика.
Эрозия или выветривание, вызывается ветром, водой, обледенением и сопровождается сносом материала с поверхности бетона и оголением заполнителя. Определяется визуально и единственным средством борьбы, своевременная защита поверхности бетона.
ОСНОВНЫЕ ВИДЫ ДЕФЕКТОВ
- Выступы на поверхности бетона (причина: недостаточно жесткая или неправильно установленная опалубка)
- Наплывы бетона (причина: недостаточная герметичность опалубки, не квалифицированная укладка, проливы)
- Раковины на поверхности бетона (причина: скопление воздуха, воды, недостаток раствора, недостаточно уплотнения бетона, щебеночность – жесткость смеси)
- Полости в бетоне (причина: зависание смеси на арматуре и опалубке, в местах технологических швов, при преждевременном схватывании ранее уложенных слоев)
ОСНОВНЫЕ ВИДЫ ТРЕЩИН
- Усадочные трещины (причина: недостаточный уход за свежеуложенным бетоном)
- Трещины конструктивного и технологического происхождения (повреждения полученные в результате транспортировки, в процессе строительства, в результате защемления, эксплуатационных нагрузок и т.д.)
ХАРАКТЕРИСТИКИ ПОВРЕЖДЕНИЙ
Повреждения делятся на группы от степени влияния на несущие способности, рассмотрим коротко все по отдельности.
- Повреждения не снижающие прочность конструкции (поверхностные раковины, пустоты, трещины, выбоины, разрушение поверхностного слоя), Не требуют срочных мер, устраняются при текущем ремонте, для предотвращения развития мелких трещин, образования новых с последующей защитой от внешних разрушающих факторов.
- Повреждения снижающие долговечность конструкции (пустоты, раковины и сколы с оголением арматуры, поверхностная и глубинная коррозия бетона) Требуют безотлагательных мер. Устранение трещин, трещин вдоль арматуры, заделка пустот, удаление рыхлого и коррозированного бетона с последующей заделкой специальными материалами
- Повреждения снижающие несущую способность конструкции (горизонтальные и наклонные трещины в стенках несущих конструкций, трещины в сопряжениях плит, пустоты в сжатых зонах и т.д.) Требуют срочных мер. Как правило под ликвидацию таких повреждений обычно разрабатывают индивидуальные проекты. При восстановлении несущей способности конструкций должны использоваться специальные материалы и технологии.
Источник