- Термические способы получения алюминиевых сплавов
- Алюминий. Получение алюминия.
- Этапы получения алюминия.
- Схема установки для получения алюминия.
- Реферат: Способы получения алюминия
- Введение
- 1. История развития алюминиевой промышленности
- 2. Основы электролиза криолитоглиноземных расплавов
- 3. Альтернативные способы получения алюминия
- 3.1. Электротермическое получение алюминиево-кремниевых сплавов.
- 3.2. Субгалогенидный процесс
- 3.3. Тот-процесс
- 3.4. Электролиз хлоридных расплавов
- Выводы.
- Список литературы
Термические способы получения алюминиевых сплавов
Ранее указывалось, что попытки получить алюминий путем восстановления Al2O3 углеродом не имели успеха в связи с трудной восстановимостью глинозема, который реагирует с углеродом при температуре около 2000° с образованием при этой температуре карбида алюминия.
При восстановлении глинозема в присутствии вещества более труднокипящего, чем алюминий и образующего с ним сплавы, можно восстанавливать алюминий из глинозема, одновременно растворяя его в этом веществе.
Присутствие растворителя облегчает восстановление алюминия и препятствует образованию карбидов.
Кремний, кипящий при 2600° и хорошо растворяющий алюминий, является весьма удобным с этой точки зрения веществом, так как при восстановлении окислов кремния и алюминия сначала образуется кремний, который уменьшает летучесть Al и способствует получению кремнеалюминиевых сплавов, содержащих до 70% Al.
Сырьем для такого процесса служат каолины, бедные железом бокситы и пр., причем для получения силумина используют не содержащее железа сырье, а для сплавов, служащих раскислителем стали, используют и железистые материалы.
В качестве восстановителей служат древесный уголь, торфяной и нефтяной кокс и другие малозольные виды топлива.
Для получения кремнеалюминиевых сплавов плавку ведут в дуговых электропечах шахтного типа с токоподводящей угольной подиной. Высокая температура процесса ведет к разрушению стен из различных огнеупоров, поэтому их стараются защищать гарниссажем из застывшей шихты.
Плавку ведут при низком (50 в) напряжении и с закрытым (для уменьшения потерь алюминия) колошником.
Спекание шихты в верхней зоне печи мешает нормальному ее сходу и нормальному выделению из нее газов, что иногда приводит к выбросам шихты из печи. Поэтому корку систематически пробивают и производят насильственную осадку шихты.
Для разрушения образующихся карбидов алюминия в ванну перед выпуском силикоалюминия добавляют кремнезем. При этом протекает реакция, выражаемая уравнением:
Силикоалюминий выпускается через летку в футерованные угольными блоками изложницы. Сплав содержит 25—70% Al; 28—70% Si и 1—1,5% Fe. Расход электроэнергии на 1 т сплава достигает 16 тыс. квт-час.
Сплавы с высоким содержанием кремния отличаются высокой хрупкостью и используются только как раскислители стали. Сплав же с содержанием 12,5% кремния, получивший название силумина, дает прочные и вязкие отливки.
Силумин получают либо сплавлением силикоалюминия с чистым алюминием, либо частичным обескремниванием силикоалюминия.
При охлаждении сплава, богатого кремнием, ниже 1000°, растворимость последнего понижается и из сплава начинают выделяться кристаллы кремния. При температуре 580° в сплаве остается не более 13% кремния, и если разделить твердую и жидкую фазы, то можно получить силумин и кремний.
Такое разделение производят обычно фильтрованием в вакууме или под давлением, применяя в качестве фильтрующей массы слой песка.
Для получения высококачественного силумина исходный сплав должен быть свободным от железа, так как оно при описанных операциях из алюминия не удаляется.
В результате фильтрования из силикоалюминия можно получить электротермический силумин, содержащий около 12% Si и 0.7—1,0% Fe, а также остаток на фильтре, содержащий до 30% Si и применяющийся как раскислитель стали для термического восстановления магния и других целей.
Источник
Алюминий. Получение алюминия.
Самым первым получил металлический алюминий немецкий химик Ф. Велер в 1821 году, с помощью восстановления AlCl3 металлическим калием. В 1854 году французский ученый Сент-Клер Девиль восстановил натрием двойной AlCl3 с помощью электролиза.
Наиболее удобный и более распространенный метод получения алюминия предложил американец Ч. Холл, чей метод предлагал электролиз оксида алюминия в растворенном в расплавленном криолите Na3AlF6.
Сырьем служат: бокситы, нефелины, алуниты и т.д.
В промышленности алюминий получают электролизом раствора чистого оксида алюминия в расплавленном криолите с добавлением CaF2 при температуре 950 °С. Криолит является растворителем, а добавка служит для поддержания оптимальной температуры плавления в ванне (около 1000°С). Электролиз водных растворы нецелесообразен, т.к. алюминий более активный элемент, чем водород. Поэтому на катоде будет выделяться водород, а не металл.
Этапы получения алюминия.
1.Очищение от примесей минеральной руды.
- проводят в стальных ваннах с теплоизоляцией и внутренней футеровкой из огнеупорного кирпича (фторид кальция расплавляется).
Катод: графитовые блоки, которыми выложено дно ванны.
Анод: угольные стержни.
Схема установки для получения алюминия.
Сначала засыпают криолит и CaF2, которые расплавляются от тепла от действия электрического тока. Затем добавляют оксид алюминия. Электрической энергии надо много, ток должен быть постоянным более 100 кА. Поэтому с экономической стороны должна быть дешевая гидростанция.
Источник
Реферат: Способы получения алюминия
Название: Способы получения алюминия Раздел: Рефераты по химии Тип: реферат Добавлен 01:41:55 15 августа 2008 Похожие работы Просмотров: 3411 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать | |||||||
глинозема, кг | 1925 – 1930 |
углерода анода, кг | 500 – 600 |
фтористых солей, кг | 50 – 70 |
электроэнергии (в переменном токе), кВт-ч | 14500 – 17500 |
Производство алюминия является одним из самых энергоемких процессов, поэтому алюминиевые заводы строят вблизи источников энергии.
Все материалы, поступающие на электролиз, должны иметь минимальное количество примесей более электроположительных, чем алюминий (железо, кремний, медь и др.), так как эти примеси при электролизе практически полностью переходят в металл.
3. Альтернативные способы получения алюминия
Промышленный способ получения алюминия электролизом криолитоглиноземных расплавов, несмотря на длительное его применение, имеет ряд существенных недостатков: высокий удельный расход электроэнергии, низкие удельный съем металла и срок службы электролизеров, большие трудовые и капитальные затраты, выделение вредных веществ в атмосферу и ряд других. В связи с этим предлагаются другие способы получения алюминия. Рассмотрим некоторые из них.
3.1. Электротермическое получение алюминиево-кремниевых сплавов.
Получить чистый алюминий непосредственным восстановлением его оксида невозможно [5]. Карботермические процессы требуют высоких температур (около 2000°С) для восстановления глинозема и при отсутствии сплавообразующих компонентов металл связывается с углеродом, давая карбид алюминия (А14 С3 ). Известно, что карбид алюминия и алюминий растворимы друг в друге и образуют весьма тугоплавкие смеси. Кроме того, А14 С3 растворяется в А12 О3 , поэтому врезультате восстановления оксида алюминия углеродом получаются смеси алюминия, карбида и оксида, имеющие высокие температуры плавления. Выпустить такую массу из печи обычно не представляется возможным. Даже если это и удается сделать, потребуются большие затраты на разделение.
В нашей стране впервые в мире разработан и осуществлен в промышленном масштабе с достаточно высокими технико-экономическими показателями способ получения силикоалюминия (алюминиево-кремниевых сплавов).
Общая технологическая схема производства алюминиево-кремниевых сплавов представлена на рис. 3.1. В качестве исходного сырья, кроме каолинов (Al2 O3 ×2SiO2 ×2H2 O), могут быть использованы кианиты (Al2 O3 ×SiO2 ), дистенсиллиманиты (Al2 O3 ×SiO2 ) и низкожелезистые бокситы.
Сплав после электроплавки поступает на очистку от неметаллических примесей. Для этого подают флюс, состоящий из смеси криолита и хлорида натрия, который смачивает эти примеси и «собирает» их. Рафинированный силикоалюминий имеет средний состав (%): А1 – 61; Si – 36; Fe – 1,7; Ti – 0,6; Zr – 0,5; Ca – 0,7. Этот сплав не годится для производства силумина и требует очистки от железа. Наиболее распространен способ очистки марганцем, который образует с железом тугоплавкие интерметаллиды.
Рис. 3.1. Общая схема производства алюминиево-кремниевых сплавов.
Полученный сплав разбавляют техническим электролитическим алюминием или вторичным алюминием до состава, отвечающего различным сортам силуминов, и разливают в слитки.
Преимущества такого способа получения силумина перед сплавлением электролитического алюминия с кристаллическим кремнием состоят в следующем: большая мощность единичного агрегата – современные печи имеют мощность 22,5 MB×A, что примерно в 30 раз выше мощности электролизера на 160 кА, а, следовательно, уменьшение грузопотоков, снижение капитальных затрат и затрат труда; применение сырья с низким кремниевым модулем, запасы которого в природе достаточно велики.
Теоретически из алюминиево-кремниевого сплава можно выделить различными приемами чистый алюминий. Однако из-за сложности аппаратурного и технологического оформления в промышленности эти способы в настоящее время не реализуются.
3.2. Субгалогенидный процесс
Известно, что если нагреть смесь галогенида и загрязненного алюминия, то при понижении температуры выделяется чистый алюминий. Это открытие вызвало интерес к системам алюминий – галогенид алюминия. Было определено, что металлический алюминий реагирует с А1Х3 (где X – галоген) при высокой температуре, образуя субгалогенид алюминия:
Поскольку субгалогенид алюминия является газообразным продуктом, равновесие смещается влево при понижении температуры. Например, А1С1(Г) можно получить из А1 и А1С13 в реакционной зоне при относительно высоких температурах, а затем перенести в парообразном состоянии в более холодную зону, где он диспропорционирует на чистый алюминий и хлорид алюминия. Константа равновесия для системы А1 – А1С13 выше, чем для системы А1 — A1F3 , и поэтому хлоридная система может быть использована для промышленных процессов. Температура образования субхлорида около 1300°С при атмосферном давлении. Этот процесс особенно привлекателен для выделения алюминия из сплавов, так как галогенид алюминия взаимодействует с алюминием и практически не взаимодействует с большинством других металлов. Трудности возникают только с некоторыми летучими галогенидамн, такими как FeCl3 , МпС12 , и некоторыми другими. Они могут образовывать смеси с А1С13 и загрязнять получаемый алюминий.
Фирмой «Alcan» разработана технология, включающая пять стадий:
1. Производство сырого сплава, например железо-кремниево-алюминиевого, в печи карботермическим восстановлением.
2. Взаимодействие между А1 и AJC1, в конвертере при температуре 1300 °С.
3. Разделение парообразных галогенидов и субгалогенида в ректификационных колоннах.
4. Возврат AICI, для реакции между хлоридом и жидким сплавом, богатым алюминием.
5. Разложение А1С1, получение алюминия и возврат А1С13 на ректификацию.
Субхлоридный метод представляет наибольший интерес для промышленного рафинирования алюминиевых сплавов.
3.3. Тот-процесс
Схема получения алюминия по способу Тота представлена на рис. 3.2. Алюминийсодержащее сырье после соответствующей подготовки хлорируют в кипящем слое в присутствии кокса и SiCl4 . Последний используется для подавления реакции хлорирования SiO2 . В результате хлорирования в печах кипящего слоя (КС) получается парогазовая смесь (ПГС), в состав которой входят А1С13 , FeCl3 , TiCl4 и SiCl4 . В первом конденсаторе из ПГС выделяется около 75 % FeCl3 в твердом состоянии и направляется в реактор-окислитель, где взаимодействует с кислородом воздуха, в результате чего образуются Fe2 O3 и С12 . Хлор возвращается на хлорирование. Во втором конденсаторе выделяется оставшийся FeCl3 и происходит конденсация А1С13 . Хлориды титана и кремния конденсируются в третьем конденсаторе. Разделение этих хлоридов осуществляется в ректификационной колонне.
Рис. 3.2. Схема получения алюминия по методу Тота.
Хлориды алюминия и железа, выгруженные из второго конденсатора, нагреваются, перекачиваются в контактный очиститель, где контактируют в противотоке с подвижным слоем твердых частиц алюминия. При этом идет реакция:
Очищенный хлорид алюминия поступает на металлотермическое восстановление. Технически доступными восстановителями, имеющими большее сродство к хлору, чем алюминий, являются натрий, магний и марганец. Однако первые два элемента дороги и их производство весьма энергоемко. Поэтому, по мнению разработчиков процесса, определенные преимущества имеет использование марганца, который можно регенерировать из хлорида карботермическим методом со значительно меньшими энергозатратами. При восстановлении хлорида алюминия марганцем протекают реакции:
Алюминий из смеси МпС12 с непрореагировавшим А1С13 , выделяется в циклонных сепараторах, а хлориды марганца и алюминия разделяются в выпарном аппарате. Хлорид алюминия возвращается в реактор для получения алюминия, а хлорид марганца взаимодействует с кислородом с образованием твердых оксидов марганца и хлора. Оксид марганца восстанавливается до металла карботермическим методом в шахтных печах, куда загружают кокс и известняк. Марганец в печь добавляется для восполнения потерь его в ходе процесса.
К недостаткам данного процесса, как и других металлотермических методов, относятся загрязнение получаемого продукта металлом-восстановителем, необходимость организации производства по регенерации восстановителя и увлечение капитальных затрат.
Исследовательские работы по получению алюминия путем восстановления марганцем в лабораторном и укрупненном масштабах были выполнены в 1966 – 1973гг. В последующем в литературе не было сообщений о промышленном развитии данного направления, что, видимо, обусловлено значительными трудностями по технической реализации этого сложного многоэтапного процесса.
3.4. Электролиз хлоридных расплавов
В январе 1973 г. фирма «Alcoa» заявила о разработке нового способа получения алюминия. Фирма работала над процессом 15 лет и затратила 23 млн. долларов.
Данный способ предусматривает получение хлорида алюминия и последующий его электролиз. В 1976 г. появились сообщения о переходе фирмы «Alcoa» к промышленному внедрению хлоридной технологии получения алюминия. В г. Палестина (Техас, США) работал завод с проектной мощностью 30 тыс. т выпуска алюминия в год этим способом.
Принципиальная технологическая схема представлена на рис. 2.4.
Рис. 3.3. Технологическая схема получения алюминия из хлорида.
Хлорид алюминия имеет высокое сродство к воде и тенденцию к образованию оксидов и гидрооксихлоридов. В связи с этим получение его в чистом виде является трудной задачей. Присутствие влаги вызывает коррозию, а присутствие кислородсодержащих соединений приводит к выделению осадков и окислению анодов. Фирмой «Alcoa» предложено хлорирование очищенного глинозема, что частично решает названные проблемы. Тем не менее, необходимо соблюдать повышенные требования к чистоте углерода при хлорировании в отношении водорода или влаги.
В последнее время появились сообщения, что фирме «Toth Aluminium Corporation» удалось получить в крупнопромышленном масштабе хлорид алюминия, содержащий не менее 99,97% основного компонента.
Полученный хлорид алюминия в гранулированном или парообразном состоянии поступает на электролиз. Электролизер, используемый в данной технологии, состоит из стального кожуха, футерованного шамотным и в нижней части дополнительно диатомовым кирпичом, т.е. теплоизоляционным непроводящим огнеупорным материалом, который слабо взаимодействует с хлоридными расплавами. На дне ванны расположен графитовый отсек для сбора жидкого алюминия. На крышке электролизера имеются отверстия для загрузки хлорида алюминия, периодического отсоса алюминия и непрерывного вывода газообразного хлора, используемого в производстве хлорида алюминия. Боковые стенки и крышка электролизера – водоохлаждаемые.
При электролизе используются графитовые нерасходуемые электроды. Это преимущество (по сравнению с электролизом криолитоглиноземных расплавов) вместе с относительно низкой температурой процесса (около 700ºС) дает возможность полной герметизации электролизеров.
Рис. 2.5. Схема электролизера с биполярными электродами для электролиза хлорида алюминия.
1 – крышка: 2 – водяное охлаждение: 3 – анод; 4 – биполярные электроды; 5 – катод; 6 – футеровка; 7 – отсек для сбора алюминия. Материал: А – графит; Б – шамот; В – диатом.
Электролитическое разложение хлорида алюминия теоретически требуют более высокого напряжения, чем электролиз криолитоглиноземных расплавов, так как напряжение разложения хлорида алюминия много больше. Таким образом, к недостаткам процесса можно было бы отнести необходимость подвода в электролизер большого количества тепла и значительные потери напряжения. Однако высокие омические и тепловые потери значительно снижаются при использовании системы биполярных электродов. В электролизере верхний электрод является анодом, нижний – катодом, а между ними располагаются графитовые электроды, верхняя часть которых является катодом, а нижняя – анодом. В то же время результаты расчетов показывают, что с ростом числа биполярных электродов и снижением площади их сечения возрастают токи утечки, т.е. часть тока протекает по пропитанной электролитом части футеровки и каналам между футеровкой и биполями, не совершая электрохимическую работу. Эти токи утечки приводят к снижению выхода по току.
Вследствие близости температур плавления и кипения при атмосферном давлении хлорид алюминия возгоняется практически не плавясь. Температура сублимации составляет 180,2°С. Тройная точка соответствует температуре 192,6°С и абсолютному давлению 0,23 МПа. В связи с этим в качестве электролита используется расплавленная смесь хлорида алюминия (5 ± 2 % (масс.)), хлорида лития (
28% (масс.)) и хлорида натрия (67% (масс.)). В указанных расплавах снижается активность А1С13 . Это в значительной степени обусловлено тем, что в расплавленных смесях хлоридов А1С13 связывается в комплексные анионы, например .
Междуполюсное расстояние составляет 1,0 – 1,5 см, температура – 700 ± 30ºС, плотность тока –0,8 – 2,5 А/см 2 .
Выводы.
Основные прогнозируемые и подтвержденные при промышленном внедрении в США преимущества предложенного фирмой «Alcoa» способа производства алюминия электролизом его хлорида по сравнению с электролизом криолитоглиноземных расплавов заключаются в возможности использования низкокачественного алюминийсодержащего сырья, снижении примерно на 30 % удельного расхода электроэнергии при электролизе, исключении расхода высококачественных углеродсодержащих электродных материалов, применении менее дефицитных и агрессивных хлоридов вместо фторидов, повышении производительности труда, снижении капитальных вложений, приведенных затрат, стоимости конечной продукции и вредных выбросов в окружающую среду.
В последнее время преимущества хлоридного способа получения алюминия становятся более ощутимыми в связи с удорожанием электроэнергии, исходных материалов для существующего промышленного способа производства алюминия, повышением требований к охране окружающей среды и отсутствием до сих пор положительных результатов по получению чистого глинозема из низкокачественного небокситового сырья.
Таким образом, наиболее перспективным из альтернативных способов получения алюминия является электролиз хлорида алюминия в электролизерах с биполярными электродами.
Список литературы
1. Розен Б. М., Розен Я. Б. Металл особой ценности. – М.: Металлургия, 1975. – 128 с.
2. Колодин Э. А., Свердлин В. А., Свобода Р. В. Производство обожженных анодов алюминиевых электролизеров. – М.: Металлургия, 1980, – 84 с.
3. Янхо Э. А., Воробьев Д. Н. Производство анодной массы. – М.: Металлургия, 1975. – 128 с.
4. Веткжов М. М., Цьшлаков А. М., Школьников С. Н. Электрометаллургия алюминия и магния. – М.: Металлургия, 1987. – 320 с.
5. Щенков В.В., Литвак СН. Разработка новых технологических процессов получения алюминия // Цв. металлургия: Бюл. НТИ / Цветметинформация. – 1974. – № 9. – С. 38 – 41.
6. Сандлер Р. А., Рапир А. Х Электрометаллургия алюминия и магния. – Л,: ЛГИ, 1983. – 94 с.
Источник