Способы передачи тепловой энергии
Передачу тепловой энергии называют теплопередачей. Есть три способа (рис. 1) передачи тепловой энергии:
С помощью теплопередачи можно изменять внутреннюю энергию тел.
Что такое теплопроводность
Теплопроводность — это передача (внутренней) тепловой энергии от одной части тела к другой его части.
Примечание: С помощью теплопроводности можно передавать тепловую энергию от одного тела к другому, если плотно прижать тела друг к другу.
При теплопроводности передается только энергия, а вещество не переносится.
Теплопроводности различных веществ отличаются. Металлы в твердом и жидком состоянии очень хорошо проводят тепло, то есть, обладают высокой теплопроводностью.
Примечание: Медь и серебро – это металлы с очень высокой теплопроводностью.
Но у остальных жидкостей теплопроводность меньше, чему твердых тел.
А у газов, например, у воздуха, теплопроводность очень мала. Поэтому пористые тела, содержащие большое количество газа, хорошо изолируют тепло.
Дом, построенный из пенобетона может иметь более тонкие стены, чем кирпичный дом.
В твердых телах тепло передается только с помощью теплопроводности.
Что такое конвекция и как она происходит
В жидкостях и газах тепло передается только с помощью конвекции. Конвекцио (лат.) – перенос.
Слои жидкости, или газа, имеющие различную температуру, могут самостоятельно перемешиваться. Этот процесс называется конвекцией.
Примечание: Конвекция — это самостоятельное перемешивание слоев жидкости, или газа, имеющих различную температуру.
Располагая руку в нескольких сантиметрах над горящей свечой, из-за конвекции мы можем ощущать тепло.
Как происходит конвекция: Более горячие слои жидкости, или газа, имеют маленькую плотность, поэтому поднимаются вверх, а их место занимают более холодные слои.
Примечание: Чтобы конвекция происходила хорошо, нужно нагревать жидкости и газы снизу.
— в чайнике нагревается вся вода, а не только находящаяся в нижней части чайника;
— воздух в помещении от пола до потолка прогревается батареями отопления, расположенными в нижней части помещения;
— дуют ветры, днем – с моря (дневной бриз), а по ночам – с суши на море (ночной бриз).
Что такое излучение
Излучение – это перенос тепловой энергии без помощи вещества. Поэтому в вакууме тепловая энергия переносится излучением.
Вакуум – это отсутствие молекул вещества в пространстве (глубокий вакуум в космосе), или, наличие небольшого количества молекул газа.
Например, в современных лабораториях можно из-под колокола откачать воздух до состояния, когда в одном кубометре пространства под колоколом будет содержаться всего несколько молекул воздуха.
Все тела могут излучать энергию. Сильно нагретые тела излучают больше энергии, чем более холодные.
Солнце – это большой раскаленный газовый шар, то есть, звезда. Солнце излучает тепло, это тепло через вакуум с помощью излучения переносится на Землю и нагревает ее поверхность и все тела, находящиеся на ней.
Известно, что черные предметы на солнце нагреваются очень быстро, а белые, почти не нагреваются.
По причине излучения более темные тела охлаждаются быстрее, чем белые.
В наши дни широкое распространение получили бытовые инфракрасные обогреватели. Эти обогреватели нагревают окружающие предметы с помощью теплового (инфракрасного) излучения.
Примечание: Теплопроводность и конвекция происходят в веществе. А излучение может переносить тепловую энергию без помощи вещества.
Источник
Способы передачи теплоты
Промышленные водогрейные котлы для производства тепла и пара
Отопительные водогрейные котлы устанавливаются в котельных административных, производственных зданий и отопительных котельных ЖКХ. Водогрейные котлы применяются для отопления, горячего водоснабжения и вентиляции промышленных заданий, цехов, гаражей, теплиц, производственных баз, строительных городков, больниц, детских садов, школ, клубов, санаториев, заводов, животноводческих ферм, магазинов, сельхоз предприятий и прочего.
Способы передачи теплоты
Способы передачи теплоты — теплота всегда передается от тел более нагретых к менее нагретым. Способы передачи теплоты от твердого тела (стенки) к обтекающей его жидкости или газу называются теплоотдачей. Способы передачи теплоты из одной среды в другую, разделенных перегородкой (стенкой), называются теплопередачей. Различают три способа переноса теплоты: теплопроводность, конвекцию и излучение (радиацию).
Теплопроводностью называется процесс распространения теплоты в теле (одном) посредством передачи кинетической энергии от более нагретых молекул к менее нагретым, находящимся в соприкосновении друг с другом. В чистом виде теплопроводность имеет место в твердых телах очень тонких, неподвижных слоях жидкости и газа.
Способы передачи теплоты распространяются через стенки котла. Теплопроводность различных веществ различна. Хорошими проводниками теплоты являются металлы. Весьма незначительна теплопроводность воздуха. Слабо проводят теплоту пористые тела, асбест, войлок и сажа.
Конвекцией называется перенос, теплоты за счет перемещения молярных объемов среды. Обычно конвективный способ переноса теплоты происходит совместно с теплопроводностью и осуществляется в результате свободного или вынужденного движения молярных объемов жидкости или газов (естественная или вынужденная конвекция). Естественной конвекцией распространяется теплота от печей, отопительных приборов, при нагревании воды в паровых котлах, охлаждении обмуровки котлов и других тепловых устройств. Свободное движение жидкости или газов обусловлено различной плотностью нагретых и холодных частиц среды. Например, воздух около поверхности печи нагревается становится легче, поднимается вверх, а на его место поступает более тяжелый, холодный. В результате этого в комнате возникает циркуляция воздуха, которая переносит теплоту.
Способы передачи теплоты включают в себя конвекцию. Вынужденная конвекция имеет место при передаче теплоты от внутренней стенки котла к воде, движущейся под действием насоса.
Излучением (радиацией) называется передача теплоты от одного тела к другому путем электромагнитных волн через прозрачную для теплового излучения среду. Этот процесс передачи теплоты сопровождается превращением энергии тепловой в лучистую и, наоборот, лучистой в тепловую. Радиацией передается теплота от факела горящего топлива к поверхности чугунных секций или стальных труб котла. Радиация — это наиболее эффективный способ передачи теплоты, особенно если излучающее тело имеет высокую температуру, а лучи от него направлены перпендикулярно к нагреваемой поверхности.
Понятие о теплопередаче. Рассмотренные выше три вида теплообмена в чистом виде встречаются очень редко. В большинстве случаев один вид сопровождается другим. Примером этого может служить передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла (рис. 7). Слева поверхность ее соприкасается с горячими газообразными продуктами сгорания и имеет температуру t1 справа омывается водой и имеет температуру t2 Температура в стенке снижается в направлении оси х.
Рис. 7.Передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла.
В данном случае теплота от газа к стенке передается одновременно путем конвекции, теплопроводности и излучением (лучистый теплообмен). Одновременная передача теплоты конвекцией, теплопроводностью и излучением называется сложным теплообменом.
Результат одновременного действия отдельных элементарных явлений приписывают одному из них, которое и считают главным. Так, радиация (излучение), называемая еще прямой отдачей, в передаче теплоты в топочной камере от топочных газов к внешней поверхности нагрева котла играет главенствующую роль, хотя наряду с ней в передаче теплоты участвуют и конвекция, и теплопроводность.
Способы передачи теплоты от внешней поверхности нагрева к внутренней через слой сажи, металлическую стенку и слой накипи осуществляются только путем теплопроводности. Наконец, от внутренней поверхности нагрева котла к воде теплота передается только конвекцией. В газоходах котла процесс теплообмена между стенкой секции и омывающими ее газами также является результатом совокупного действия конвекции, теплопроводности и радиации. Однако в качестве основного явления принимается конвекция.
Количественной характеристикой передачи теплоты от одного теплоносителя к другому через разделяющую их стенку является коэффициент теплопередачи К. Для плоской стенки коэффициент К количество теплоты, переданной в единицу времени: от одной жидкости к другой на площади 1 м 2 при разности температура между ними в один град. — определяется по формуле:
где α1 — коэффициент теплоотдачи от газов к стенке поверхности нагрева, Вт/(м 2 ×град); δ 3 — толщина золовых или сажевых отложений (так называемые наружные загрязнения), м; δст — толщина стенки секций или труб, м; δн — толщина накипи (так называемое внутреннее загрязнение), м; λ3, λст, λв – соответствующие коэффициенты теплопроводности золы или сажи, стенки и накипи, Вт/(м×град); α2 -. коэффициент теплоотдачи от стенки к воде/ Вт/(м 2 ×град).
В соответствии с приведенным примером сложного теплообмена (см. рис. 7) общий коэффициент теплоотдачи, а от газов к стенке котла соответственно равен:
где αк и αл — коэффициенты, теплоотдачи конвекцией и излучением.
Величина, обратная коэффициенту теплопередачи, называется термическим сопротивлением теплопередачи. Для данного случая:
Различные вещества имеют разные коэффициенты теплопроводности.
Коэффициент теплопроводности К — количество теплоты, передаваемое через единицу площади поверхности нагрева в единицу времени при разности температур в 1 град и толщине стенки в 1 м. При использовании внесистемных единиц (ккал в ч) размерность коэффициента теплопроводности ккал×м/(м 2 ×ч×град), в системе СИ — Вт/ (м × град).
Коэффициенты теплопроводности различных материалов, наиболее часто встречающихся в отопительно — котельной технике, приведены ниже, Вт/(м×град).
Количество теплоты Q, передаваемое через стенку, определяется по формуле:
где К — коэффициент теплопередачи, Вт/ (мг×град); ∆t — средняя разность температур греющей и нагреваемой сред или среднелогарифмический температурный напор, град; Н — площадь поверхности нагрева, м 2 .
Среднелогарифмический температурный напор ∆t определяется по формуле:
где ∆tg и ∆tм — наибольшая и наименьшая разности температур греющей и нагреваемой среды.
Рис. 8. Характер изменения температур рабочих жидкостей при
а — прямотоке; б — противотоке.
Характер изменения температур рабочих жидкостей показан на рис. 8. Если в теплообменном аппарате греющая и нагреваемая жидкости протекают в одном направлении, то такая схема движения называется прямотоком (см. рис. 8, а), а в противоположных — противотоком (см. рис. 8, б).
Для единицы площади теплопередающей поверхности удельный поток, обозначаемый q, будет равен:
Из приведенных формул видно, что количество передаваемой теплоты тем больше, чем больше площадь поверхности нагрева Н и чем больше средняя разность температур или температурный напор и коэффициент теплопередачи К. Наличие на стенке котла накипи, золы или сажи значительно снижает коэффициент теплопередачи (см. ниже пример).
Определяющим фактором в передаче теплоты радиацией являются температура излучающего тела и степень его черноты. Поэтому, чтобы интенсифицировать передачу теплоты радиацией, необходимо увеличить температуру излучающего тела, повысив шероховатость поверхности.
Теплоотдача конвекцией зависит: от скорости движения газов, разности температур греющей и нагреваемой среды, характера обтекания газами поверхности нагрева — продольное или поперечное, вида поверхности — гладкая или оребренная. Основными способами интенсификации передачи теплоты конвекцией являются: повышение скорости газов, их завихрение в газоходах, увеличение площади поверхности нагрева за счет ее оребрения, повышение разности температур между греющей и нагреваемой средами, осуществление встречного (противоточного) омывания.
Пример. Рассмотрим влияние накипи и сажи на теплопередачу в котле, используя данные настоящего раздела. Принимаем толщину стенки секции чугунного котла δ1 = 8 мм, а отложившиеся на ней слой накипи толщиной δ2 = 2 мм и слой сажи δ3 = 1 Гмм. Коэффициенты теплопроводности стенки λ1, накипи λ2 и сажи λ3 соответственно принимаем равными 54; 0,1 и 0,05 ккал/(м×ч×град) (√62,7; 0,116 и 0,058 Вт/ (м 2 × К). Значения коэффициентов теплоотдачи: от, газов к стенке α1 = 20 ккал/(м 2 ×град); от стенки к воде α2 = 1000 ккал/(м 2 ×ч×град). Температуру газов принимаем равной t газ = 800°С, воды t = 95 С.
Расчеты производим для чистой и загрязненной стенок чугунного котла.
А. Стенка котла чистая.
Найдем коэффициент теплопередачи:
К = (l/α1 + δ/λ + l/α2 ) -1 = (1/20 + 0,008/54 + 1/1000) -1 = 1/0,0512 = 19,5 ккал/(м 2 × ч ×град) = 22,6 Вт/ (м 2 × град) и тепловой поток через стенку.
q = K∆t = 19,5 (800-95) = 13700 ккал/(м 2 ×ч) = 15850 Вт/ (м 2 ).
Определим температуру наружной поверхности стенки чугунной секции, воспользовавшись формулой
Из расчета видно, что при чистой стенке котла температура ее мало отличается от температуры воды внутри котла.
Б. Стенка котла загрязненная.
Повторив весь расчет, найдем:
q = 11 (800 — 95) = 7750 ккал/ (м 2 ×ч) = 8960 Вт/ (м 2 ), tст = 800 — 7750/20 = 412C.
Из расчета видно, что отложение сажи нежелательно тем, что она, обладая малой теплопроводностью, затрудняет передачу теплоты от топочных газов к стенкам котла. Это приводит к перерасходу топлива, снижению выработки котлами пара или горячей воды.
Накипь, имея малую теплопроводность — значительно уменьшает передачу теплоты oт стенки котла к воде, в результате чего стенки, сильно перегреваются и в некоторых случаях; разрываются, вызывая аварии котлов.
Сравнивая результаты расчета, видим, что теплопередача через загрязненную стенку уменьшилась почти в два раза, температура стенки чугунной секции при накипи возросла до опасных, по условиям прочности металла, пределов, что может привести к разрыву секции. Этот пример наглядно показывает необходимость регулярной очистки котла как от накипи, так и от сажи или золы.
Источник