- Формула темпа прироста
- Понятие и значение темпа прироста
- Формула темпа прироста
- Отличие темпа роста и темпа прироста
- Примеры решения задач
- Задача №56. Расчёт аналитических показателей динамики
- Решение:
- СПИСОК ЛИТЕРАТУРЫ ОНЛАЙН
- Как рассчитать темп роста и прироста?
- Расчет темпа роста и прироста
- Расчет средних темпов роста и прироста
- Расчет базисного темпа роста и базисного темпа прироста
- Расчет цепного темпа роста и цепного темпа прироста
Формула темпа прироста
Понятие и значение темпа прироста
Темп прироста используется при анализе какого-либо ряда динамики. Формула темпа прироста часто применяется в статистике и экономике в паре с таким показателем, как темп роста (в процентном соотношении).
Если в результате расчета получается положительная величина, то можно говорить об увеличивающемся темпе прироста, при отрицательном же значении происходит снижение темпа исследуемого значения, если сравнивать его с предыдущим (базисным) периодом.
Формула темпа прироста часто применяется в анализе инвестиционных проектов. Также этот показатель часто используется муниципальными организациями при расчетах:
- вычисление прироста населения;
- будущей потребности в зданиях;
- объемов оказания услуг и др.
Формула темпа прироста
Для расчета темпа прироста нужно найти отношение исследуемого показателя к предыдущему (базисному), далее из получаемого результата вычесть единицу. Окончательный результат умножается на 100, для того, что бы выразить итог в процентах. Формула темпа прироста по первому способу выглядит так:
Тп=((Пип/Пбп)-1)*100%
Здесь Тп – темп прироста,
Пбп – показатель базисного периода,
Пип – показатель исследуемого периода.
В случае, когда вместо фактического значения анализируемых показателей известно только значение абсолютного прироста, применяют альтернативную формулу. При этом находят процентное отношение абсолютного прироста к тому уровню, в сравнении с которым он и рассчитывался.
Тп=((Пип-Пбп)/Пбп)*100%
Здесь Тп – темп прироста,
Пбп – показатель базисного периода,
Пип – показатель исследуемого периода.
Отличие темпа роста и темпа прироста
Большую сложность для учащихся представляет отличие темпа роста от темпа прироста. Выделим несколько положений, в которых заключается разница между этими величинами:
- Формула темпа роста и формула темпа прироста рассчитываются по разным методикам.
- Темп роста отражает количество процентов одного показателя относительно другого, а темп прироста показывает, насколько он вырос.
- На основании расчетов по формуле темпа роста можно рассчитать темп прироста, при этом по формуле темпа прироста расчет темпа роста не проводят.
- Темп роста не принимает отрицательное значение, при этом темп прироста может получаться как положительной, так и отрицательной величиной.
Примеры решения задач
Задание | Для предприятия ООО «Севермет» даны следующие показатели, представленные за 2015 и 2016 год: |
2015 год – 120млн. рублей,
2016 год – 110,4млн. рублей.
Известно, что в 2017 году величина дохода увеличилась в сравнении с 2016 годом на 25 млн. рублей.
На основе имеющихся данных рассчитать темп роста и прироста, сделав при этом выводы.
Здесь Тр – темп роста,
П2015 – показатель за 2015 год,
П2016 – показатель за 2016 год.
Тр=110,4млн. руб./120млн. руб. * 100% = 92 %
Темп прироста обозначает процентное соотношение изменения величины в текущем периоде в сравнении с предыдущим. Для расчета нужна формула темпа прироста:
Или второй способ:
Рассчитаем показатели за 2017 год
Тр=(120 млн. руб. + 25 млн. руб.)/120 млн. руб.= 1,21 (или 121 %)
Тп=(145 млн. руб./120 млн. руб)-1=0,208 (или 20,8%)
Вывод. Мы видим, что темп роста при сравнении 2015 и 2016 года составил 92%. Это означает, что прибыль предприятия в 2016 году уменьшилась на 92%в сравнении с 2015 годом. При расчете темпа прироста получилась отрицательная величина (-8%), что говорит о том, что прибыль компании в 2016 году (при сравнении с 2015 годом) уменьшилась на 8%. В 2017 году прибыль составила 121% в сравнении с 2016 годом. При расчете темпа прироста мы видим, что он составил 20,8%. Положительная величина говорит об увеличении прибыли именно на это количество процентов.
Задание | Рассчитать прирост заработной платы на предприятии ООО «Севермет» за 2015 и 2016 год. Даны следующие показатели: |
Заработная плата 2015 год – 31,5 тыс. руб.,
заработная плата 2016 год – 33 тыс. руб.,
Вывод: Таким образом, мы видим, что темп прироста составил 4,8 %, что означает, что заработная плата в 2016 году по сравнению с 2015 годом увеличилась на 4,8%.
Источник
Задача №56. Расчёт аналитических показателей динамики
Добыча нефти характеризуется следующими данными:
Годы | Добыча нефти, тыс. т |
---|---|
1-ый | 150 |
2-ой | 210 |
3-ий | 248 |
4-ый | 286 |
5-ый | 320 |
6-ой | 337 |
Произвести анализ ряда динамики по:
1) показателям, характеризующим рост добычи нефти (на цепной и базисной основе): абсолютный прирост, темпы роста и прироста (по годам к базисному году); результаты расчетов изложить в табличной форме;
2) средний уровень и среднегодовой темп ряда динамики;
3) показать взаимосвязь между цепными и базисными показателями.
Решение:
Абсолютный прирост цепной (Δyц) – это разность между текущим уровнем ряда и предыдущим:
Так, во 2-ом г. прирост добычи нефти в сравнении с первым годом составит:
= 210 – 150 = 60 тыс. т.
В 3-ем году прирост добычи нефти в сравнении со 2-м годом составит:
Δyц 3-й год = 248 – 210 = 38 тыс. т.
Аналогично исчисляются абсолютные приросты за последующие годы. Результаты расчётов занесём в таблицу.
Абсолютный прирост базисный (Δyб) – это разность между текущим уровнем ряда и уровнем ряда, выбранным за базу сравнения:
Так как в задании не указано, какой год взять в качестве базисного года, по умолчанию будем считать базисным 1-й год.
Абсолютный прирост базисный во 2-ом г. совпадает с цепным абсолютным приростом в этом году:
Δyб = 210 – 150 = 60 тыс. т
в 3-ем году базисный абсолютный прирост равен:
Δyб = y3 – y2 = 248 – 150 = 98 тыс. т и т.д (гр. 3 расчётной таблицы).
Темп роста (Тр) – отношение уровней ряда динамики, которое выражается в коэффициентах и процентах.
Цепной темп роста исчисляют отношением текущего уровня к предыдущему:
(гр. 5 расчётной таблицы);
базисный – отношением каждого последующего уровня к одному и тому же уровню, принятому за базу сравнения:
(гр. 4 расчётной таблицы).
Темп прироста (Тпр) так же может быть цепной или базисный.
Цепной рассчитывается как отношение абсолютного прироста к предыдущему уровню ряда динамики:
Базисный темп прироста рассчитывается как отношение абсолютного прироста к базисному уровню ряда динамики:
Если предварительно был вычислен темп роста, то темп прироста можно рассчитать как разность между темпами роста и единицей, если темпы роста выражены в коэффициентах:
или как разность между темпами роста и 100%, если темпы роста выражены в процентах:
Тпр= Тр – 100% (гр. 6 и 7 расчётной таблицы).
Годы | Добыча нефти, тыс. т | Абсолютный прирост базисный, тыс. т | Абсолютный прирост цепной, тыс. т | Темп роста базисный, % | Темп роста цепной, % | Темп прироста базисный, % | Темп прироста цепной, % |
---|---|---|---|---|---|---|---|
А | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1-ый | 150 | 0 | — | 100,00 | — | — | — |
2-ой | 210 | 60 | 60 | 140,00 | 140,0 | 40,00 | 40,0 |
3-ий | 248 | 98 | 38 | 165,33 | 118,1 | 65,33 | 18,1 |
4-ый | 286 | 136 | 38 | 190,67 | 115,3 | 90,67 | 15,3 |
5-ый | 320 | 170 | 34 | 213,33 | 111,9 | 113,33 | 11,9 |
6-ой | 337 | 187 | 17 | 224,67 | 105,3 | 124,67 | 5,3 |
Из таблицы видно, что добыча нефти росла от года к году. Однако прирост добычи с каждым годом становился меньше.
2) Средний уровень ряда определяется в данном случае по формуле средней арифметической простой, где в числителе сумма уровней динамического ряда, а в знаменателе их число:
Среднегодовой темп роста ряда динамики рассчитывается по формуле средней геометрической
где ПТр – произведение цепных темпов роста (в коэффициентах),
– конечный базисный темп роста (в коэффициентах),
n – число темпов.
Среднегодовой темп прироста ряда динамики:
Добыча нефти ежегодно возрастала в среднем на 17,6%.
3) Между цепными и базисными темпами роста имеется взаимосвязь:
произведение цепных темпов роста (в коэффициентах) равно конечному базисному темпу роста.
Сумма цепных абсолютных приростов равна конечному базисному абсолютному приросту:
Выводы: С 1 по 6 годы добыча нефти росла от года к году. Объём добычи нефти за эти годы вырос на 124,7%, что в абсолютном выражении составило 187 т. Однако ежегодный прирост добычи с каждым годом снижался. В среднем добыча нефти ежегодно возрастала на 17,6%.
Источник
СПИСОК ЛИТЕРАТУРЫ ОНЛАЙН
Как рассчитать темп роста и прироста?
Темп роста — это прирост какой-либо изучаемой величины за один временной период (обычно применяется к году).
Темп прироста — это прирост какой либо изучаемой величины за один временной период за вычетом 100%.
Темп роста и темп прироста измеряются в процентах и являются относительными величинами. Темп роста — всегда величина положительная, темп прироста может быть отрицательным. Темп прироста равен темп роста минус 100%.
Теперь рассмотрим расчет темпа роста и темпа прироста более подробно.
Расчет темпа роста и прироста
Для наглядности СКАЧАЙТЕ ФАЙЛ РАСЧЕТА, в котором отражен расчет: темп роста и темп прироста. Обратите внимание: на первом листе книги файла расчетов представлен расчет, а на втором листе книги файла расчетов — формулы расчета темпа роста и прироста.
На рисунке представлен пример расчета темпа роста и прироста:
Для наглядности на рисунке ниже приведен этот же пример, только с открытыми формулами:
На рисунке видно, что определение темпа роста осуществляется путем деления Показателя 2 на Показатель 1 и умножения на 100%. При этом темп прироста равен: деление показателя 2 на показатель 1 умножение на 100% и минус 100%, то есть темп прироста равен темп роста минус 100%.
Расчет средних темпов роста и прироста
Так же на рисунках указано как рассчитывается средний темп роста и средний темп прироста. Для определения среднего темпа роста необходимо сложить показатели за все четыре периоды и разделить полученную сумму на количество периодов, то есть на 4. Аналогично рассчитывается средний темп прироста — сумма темпов прироста за все периоды делится на количество периодов.
Расчет базисного темпа роста и базисного темпа прироста
Для наглядности СКАЧАЙТЕ ФАЙЛ РАСЧЕТА, в котором отражен расчет: базисный темп роста, базисный темп прироста, цепной темп роста, цепной темп прироста. Обратите внимание: на первом листе книги файла расчетов представлен расчет, а на втором листе книги файла расчетов — формулы расчета темпа роста и прироста.
На рисунке ниже представлен расчет базисного темпа роста и прироста (таблицы 2 и 3):
Расчет базисного темпа роста заключается в том, что необходимо произвести расчет темпов роста всех показателей. Обратите внимание, что тем роста (прироста) первого показателя рассчитать нельзя.
В примере за базисный показатель принят Показатель 1, поэтому базисный темп роста или базисный темп прироста рассчитывается исходя из этого положения, то есть при расчете базисного темпа роста Показатель 2 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 1 и умножаем на 100, при расчете базисного темпа прироста из каждого показателя базисного темпа роста вычитаем 100.
Расчет цепного темпа роста и цепного темпа прироста
На рисунке выше представлен расчет базисного темпа роста и прироста (таблицы 4 и 5).
Расчет цепного темпа роста заключается в том, что необходимо произвести расчет темпов роста всех показателей. Обратите внимание, что тем роста (прироста) первого показателя рассчитать нельзя. В отличие от базисного темпа роста или прироста, цепной темп роста или прироста рассчитывается из текущего и предыдущего показателя.
То есть цепной темп роста или цепной темп прироста рассчитывается следующим образом: Показатель 2 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 2 и умножаем на 100, далее Показатель 4 делим на Показатель 3 и умножаем на 100, при расчете цепного темпа прироста из каждого показателя цепного темпа роста вычитаем 100.
Для того, чтобы закрепить полученную информацию, обратите внимание на рисунок ниже, в котором отражены формулы расчета: базисный темп роста, базисный темп прироста, цепной темп роста, цепной темп прироста:
Обратите внимание, что при расчете базисного и цепного показателей, значения базисного и цепного темпов роста и прироста равны, так как при избрании в качестве базисного показателя первого из ряда, они рассчитываются одинаково.
Источник