Тема реферата по математике способы вычисления интегралов

Содержание
  1. Доклад: Вычисление интегралов
  2. Интеграл и его применение
  3. История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
  4. Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
  5. Реферат на тему: «Интеграл и его применение»
  6. Студентки
  7. мед. колледжа
  8. №2 203 группы
  9. Куликовой Марии
  10. Санкт — Петербург 2010 год
  11. Список литературы
  12. Подобные документы
  13. Реферат: Исследование методов вычисления определенных интегралов
  14. Введение
  15. Теоретическая часть
  16. Метод трапеций
  17. Метод Симпсона (парабол)
  18. Пример применения
  19. Блок-схема метода трапеций
  20. Блок-схема метода Симпсона
  21. Практическая часть
  22. Конструирование интерфейса
  23. Программное вычисление

Доклад: Вычисление интегралов

Нахождение производной f’ (x) или дифференциала df=f’ (x) dx функции f(x) является основной задачей дифференциального исчисления. В интегральном исчислении решается обратная задача: по заданной функции f(x) требуется найти такую функцию F(x), что F’ (х)=f(x) или F(x)=F’ (x) dx=f(x) dx. Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т.д.

Курс математического анализа содержит разнообразный материал, однако, одним из его центральных разделов является определенный интеграл. Интегрирование многих видов функций подчас представляет собой одну из труднейших проблем математического анализа.

Вычисление определенного интеграла имеет не только теоретический интерес. К его вычислению сводятся иногда задачи, связанные с практической деятельностью человека.

Также понятие определенного интеграла широко используется в физике.

1. Нахождение площади криволинейной трапеции

Криволинейной трапецией называется фигура, расположенная в прямоугольной системе координат и ограниченная осью абсцисс, прямыми х = а и х = b и кривой , причем неотрицательна на отрезке . Приближенно площадь криволинейной трапеции можно найти так:

1. разделить отрезок оси абсцисс на n равных отрезков;

2. провести через точки деления отрезки, перпендикулярные к оси абсцисс, до пересечения с кривой ;

3. заменить получившиеся столбики прямоугольниками с основанием и высотой, равной значению функции f в левом конце каждого отрезка;

4. найти сумму площадей этих прямоугольников.

Но можно найти площадь криволинейной иначе: по формуле Ньютона-Лейбница. Для доказательства формулы, носящей их имена, докажем, что площадь криволинейной трапеции равна , где – любая из первообразных функции , график которой ограничивает криволинейную трапецию.

Вычисление площади криволинейной трапеции записывается так:

1. находится любая из первообразных функции .

2. записывается . — это формула Ньютона-Лейбница.

2. Нахождение площади криволинейного сектора

Площадь криволинейного сектора.

Рассмотрим кривую ρ = ρ (φ) в полярной системе координат, где ρ (φ) – непрерывная и неотрицательная на [α; β] функция. Фигура, ограниченная кривой ρ (φ) и лучами φ = α, φ = β, называется криволинейным сектором. Площадь криволинейного сектора равна

3. Нахождение длины дуги кривой

Пусть в прямоугольных координатах дана плоская кривая AB, уравнение которой y = f(x), где a≤ x ≤ b. (рис 2) [7]

Под длиной дуги AB понимается предел, к которому стремиться длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего звена ее стремиться к нулю.

Применим схему I (метод сумм).

Точками X= a, X, …, X= b (X≤ X≤ … ≤ X) разобьем отрезок [a, b] на n частей. Пусть этим точкам соответствуют точки M= A, M, …, M= B на кривой AB. Проведем хорды MM, MM, …, MM, длины которых обозначим соответственно через ΔL, ΔL, …, ΔL.

Получим ломанную MMM… MM, длина которой равна L= ΔL+ ΔL+ … + ΔL= ΔL.

Длину хорды (или звена ломанной) ΔLможно найти по теореме Пифагора из треугольника с катетами ΔXи ΔY:

ΔL= , где ΔX= X– X, ΔY= f(X) – f(X).

По теореме Лагранжа о конечном приращении функции

ΔY= (C) ΔX, где C(X, X).

а длина всей ломанной MMM… MMравна

Длина кривой AB, по определению, равна

Заметим, что при ΔL0 также и ΔX0 (ΔL= и следовательно | ΔX|

Источник

Интеграл и его применение

История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 19.10.2010
Размер файла 329,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Читайте также:  Способы избрания президента зарубежных странах

Реферат на тему: «Интеграл и его применение»


Студентки


мед. колледжа


№2 203 группы


Куликовой Марии


Санкт — Петербург 2010 год

Символ интеграла введен с 1675 г., а вопросами интегрального исчисления занимаются с 1696 г. Хотя интеграл изучают, в основном, ученые-математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ т введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a) Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инте грал иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласил ись с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis ), которое ввел И. Бернулли.

Другие известные термины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило бол ее раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = т f(x)dx — начальная (или первоначальная, или первообразная) для f (x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную b, называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т.е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 — ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод — метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым, тем не менее, приписывали площадь, равную бесконечно малой величине f(х)dx . В соответствии с таким пониманием искомая площадь считалась равной сумме

Читайте также:  Рисунки с детьми необычным способом

a t1) прошла путь S, то

Объём — количественная характеристика пространственного тела. За единицу измерения объёма принимают куб с ребром 1мм(1ди, 1м и т.д.).

Количество кубов единичного объёма размещенных в данном теле — объём тела.

Объём — это неотрицательная величина.

Объём тела равен сумме объёмов тел, его составляющих.

Найдем формулу для вычисления объёма (рис. 10):

выберем ось ОХ по направлению расположения этого тела;

определим границы расположения тела относительно ОХ;

введем вспомогательную функцию S(x) задающую следующее соответствие: каждому x из отрезка [a;b] поставим в соответствие площадь сечения данной фигуры плоскостью, проходящей через заданную точку x перпендикулярно оси ОХ.

разобьем отрезок [a;b] на n равных частей и через каждую точку разбиения проведём плоскость перпендикулярную оси ОХ, при этом наше тело разобьется на части. По аксиоме

V=V1+V2+. +Vn=lim(S(x1)Dx +S(x2)Dx+. +S(xn)Dx

Dx®0, а Sk®Sk+1, а объем части, заключенной между двумя соседними плоскостями равна объему цилиндра Vц=SоснH.

Имеем сумму произведений значений функций в точках разбиения на шаг разбиения, т.е. интегральную сумму. По определению определенного интеграла, предел этой суммы при n®Ґ называется интегралом a

V= т S(x)dx, где S(x) — сечение плоскости, проходящей через

b выбранную точку перпендикулярно оси ОХ.

Для нахождения объема надо:

1). Выбрать удобным способом ось ОХ.

2). Определить границы расположения этого тела относительно оси.

3). Построить сечение данного тела плоскостью перпендикулярно оси ОХ и проходящей через соответственную точку.

4). Выразить через известные величины функцию, выражающую площадь данного сечения.

5). Составить интеграл.

6). Вычислив интеграл, найти объем.

Объем фигур вращения

Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.

Функция S(x) у фигуры вращения есть круг.

Длина дуги плоской кривой

Пусть на отрезке [a;b] функция y = f(x) имеет непрерывную производную y’ = f ‘(x). В этом случае длину дуги l “куска” графика функции y = f(x), xО[a;b] можно найти по формуле

Список литературы

1. М.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд, “Алгебра и математический анализ”, Москва, 1993 г.

2. “Сборник задач по математическому анализу”, Москва, 1996 г.

3. И.В. Савельев, “Курс общей физики”, том 1, Москва, 1982 г.

4. Для подготовки данной работы были использованы материалы с сайта http://referatovbank.ru/

Подобные документы

Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

презентация [1,8 M], добавлен 05.07.2016

История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

курсовая работа [2,7 M], добавлен 16.10.2013

Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.

контрольная работа [842,6 K], добавлен 10.02.2017

История появления понятия «интеграла» и интегрального исчисления, его особенности и значение. Интеграл как один из основных инструментов работы с функциями. Обоснование необходимости выражения всех физических явлений в виде математической формулы.

презентация [344,4 K], добавлен 19.05.2014

Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

контрольная работа [257,4 K], добавлен 23.02.2011

Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

презентация [1,2 M], добавлен 15.01.2014

Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.

контрольная работа [383,6 K], добавлен 25.03.2011

Источник

Реферат: Исследование методов вычисления определенных интегралов

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФИЛИАЛ В ГОРОДЕ СТЕРЛИТАМАК

КАФЕДРА ЕСТЕСТВЕННО-НАУЧНЫХ И ОБЩЕПРОФЕССИОНАЛЬНЫХ ДИСЦИПЛИН

ИССЛЕДОВАНИЕ МЕТОДОВ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

к курсовой работе по ИНФОРМАТИКЕ

Название: Исследование методов вычисления определенных интегралов
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 07:06:20 18 апреля 2011 Похожие работы
Просмотров: 4372 Комментариев: 20 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно Скачать
Группа ВТС-109 Фамилия, и. о. Подпись Дата Оценка
Студент Терещук А.И.
Консультант Карасев Е.М.
Проверил

Метод Симпсона (парабол)

Введение

При решении ряда актуальных физических и технических задач встречаются определенные интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определенными интегралами, сами подынтегральные функции которых не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов.

Мне была поставлена задача исследовать два метода вычисления определенных интегралов: метод трапеций и метод Симпсона (парабол)

метод трапеция симпсон интеграл

Теоретическая часть

Метод трапеций

Пусть требуется вычислить интеграл . Разобьем сегмент на n равных частей при помощи точек . Метод трапеций заключается в замене интеграла суммой

площадей трапеций с основаниями, соответственно равными и , и с высотами, равными .

Таким образом, справедлива формула:

,

Где R — остаточный член. Это формула называется формулой трапеций .

Рисунок 1 — Криволинейная трапеция

По методу трапеций интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине.

Рисунок 2 — Метод трапеций

Метод Симпсона (парабол)

Для вычисления интеграла снова разобьем сегмент на n равных частей при помощи точек и обозначим через середину сегмента . Метод парабол заключается в замене интеграла суммой

площадей фигур и представляющий собой трапеции, лежащие под параболами, проходящими через три точки графика функции f ( x) cабсциссами .

Таким образом, справедлива формула:

,

Где R — остаточный член. Это формула называется формулой Симпсона.

Пример применения

Рисунок 3 — График функции

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
x 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
y 1 0,86 0,76 0,68 0,6 0,55 0,5 0,47 0,46 0,43 0,41

Найдем площадь криволинейной трапеции методом трапеций:

S=0,1* ( (1+0,41) /2+0,86+0,76+0,68+0,6+0,55+0,5+0,47+0,46+0,43) =0,6025 кв. ед

Найдем площадь криволинейной трапеции методом Симпсона:

S=0,0017*2* (1+0,41+2* (0,76+0,6+0,5+0,46) +4* (0,86+0,68+0,55+0,47+0,43)) =

Блок-схема метода трапеций

Блок-схема метода Симпсона

Практическая часть

Конструирование интерфейса

Программа разрабатывается в объектно-ориентированной среде программирования Lazarus.

Перед началом программирования, была создана форма Заставка.

Рисунок 4 — Заставка

В этом окне расположены:

· Кнопка «Запуск», позволяющая приступить к началу программы;

Затем была создана основная форма Меню, позволяющая выбирать операции.

Рисунок 5 — Основная форма

Данное окно представляет главное окно программы.

В этом окне расположены:

· Компоненты Label для подписи компонентов Edit;

· Компонент MainMenuдля выбора операции;

Далее была создана форма Параметры, предназначенная для введения данных.

Рисунок 6 — Параметры

В этом окне расположены:

· Компоненты Label для подписи компонентов Edit;

· Две кнопки: «OK» — принимает данные и возвращается на главное меню; «Отмена» — позволяет вернуться к главному окну, не принимая данных;

Затем была создана форма Решение, на которой будет показана площадь по разным методам вычислений и визуализироваться один из методов.

Рисунок 7 — Решение

В этом окне расположены:

· Компонент Label для подписи компонента Edit;

· Две кнопки: «График» — визуализирует метод трапеций; «OK» — принимает данные и возвращается на главное меню;

· Компонент Chartдля отображения графика;

Следующая форма была создана сравнение методов, то есть для исследования методов на погрешность с заданной точностью.

Рисунок 8 — Исследование на погрешность

В этом окне расположены:

· Три кнопки: Кнопка «График погрешности» визуализирует сравнение методов; Кнопка «Сохранить» сохраняет результаты сравнения в текстовый файл; Кнопка «OK» — принимает данные и возвращается на главное меню;

· Компонент Chartдля отображения графика;

Программное вычисление

По блок-схеме была создана программа для вычисления интеграла методами Симпсона и трапеций:

a,b,E,h,S,S1,x: real; n, i: integer;

function f (x: real): real;

// В соответствие с блок-схемой напишем программу на языке высокого уровня:

procedure TForm2. MenuItem4Click (Sender: TObject);

// найдем площадь интеграла по методу трапеций

S: =0; // изначально обнуляем значение площади интеграла

n: =1; // начальное значение количества разбиений

Repeat // начало цикла

S1: =S; // предыдущее значение площади изначально равно значению площади с количеством разбиений равным 1

n: =2*n; // увеличиваем количество разбиений в два раза

h: = (b-a) /n; // формула вычисления шага

S: =f (a) +f (b); // значение функции в нижнем пределе + значение функции в верхнем пределе определенного интеграла

x: =a; // значению xприсвоим значение нижнего предела

fori: =1 ton-1 do // для i-того элемента, изменяющегося от 1 до n-1

Источник

Оцените статью
Разные способы