Таблица интегралов способы вычисления определенного интеграла

Вычисление определенного интеграла. Формула Ньютона-Лейбница

Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.

Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.

Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.

Формула Ньютона-Лейбница

Когда функция y = y ( x ) является непрерывной из отрезка [ a ; b ] ,а F ( x ) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫ a b f ( x ) d x = F ( b ) — F ( a ) .

Данную формулу считают основной формулой интегрального исчисления.

Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.

Когда функция y = f ( x ) непрерывна из отрезка [ a ; b ] , тогда значение аргумента x ∈ a ; b , а интеграл имеет вид ∫ a x f ( t ) d t и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫ a x f ( t ) d t = Φ ( x ) , она является непрерывной, причем для нее справедливо неравенство вида ∫ a x f ( t ) d t ‘ = Φ ‘ ( x ) = f ( x ) .

Зафиксируем, что приращении функции Φ ( x ) соответствует приращению аргумента ∆ x , необходимо воспользоваться пятым основным свойством определенного интеграла и получим

Φ ( x + ∆ x ) — Φ x = ∫ a x + ∆ x f ( t ) d t — ∫ a x f ( t ) d t = = ∫ a x + ∆ x f ( t ) d t = f ( c ) · x + ∆ x — x = f ( c ) · ∆ x

где значение c ∈ x ; x + ∆ x .

Зафиксируем равенство в виде Φ ( x + ∆ x ) — Φ ( x ) ∆ x = f ( c ) . По определению производной функции необходимо переходить к пределу при ∆ x → 0 , тогда получаем формулу вида Φ ‘ ( x ) = f ( x ) . Получаем, что Φ ( x ) является одной из первообразных для функции вида y = f ( x ) , расположенной на [ a ; b ] . Иначе выражение можно записать

F ( x ) = Φ ( x ) + C = ∫ a x f ( t ) d t + C , где значение C является постоянной.

Произведем вычисление F ( a ) с использованием первого свойства определенного интеграла. Тогда получаем, что

F ( a ) = Φ ( a ) + C = ∫ a a f ( t ) d t + C = 0 + C = C , отсюда получаем, что C = F ( a ) . Результат применим при вычислении F ( b ) и получим:

F ( b ) = Φ ( b ) + C = ∫ a b f ( t ) d t + C = ∫ a b f ( t ) d t + F ( a ) , иначе говоря, F ( b ) = ∫ a b f ( t ) d t + F ( a ) . Равенство доказывает формулу Ньютона-Лейбница ∫ a b f ( x ) d x + F ( b ) — F ( a ) .

Приращение функции принимаем как F x a b = F ( b ) — F ( a ) . С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫ a b f ( x ) d x = F x a b = F ( b ) — F ( a ) .

Чтобы применить формулу, обязательно необходимо знать одну из первообразных y = F ( x ) подынтегральной функции y = f ( x ) из отрезка [ a ; b ] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.

Произвести вычисление определенного интеграла ∫ 1 3 x 2 d x по формуле Ньютона-Лейбница.

Рассмотрим, что подынтегральная функция вида y = x 2 является непрерывной из отрезка [ 1 ; 3 ] , тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что функция y = x 2 имеет множество первообразных для всех действительных значений x , значит, x ∈ 1 ; 3 запишется как F ( x ) = ∫ x 2 d x = x 3 3 + C . Необходимо взять первообразную с С = 0 , тогда получаем, что F ( x ) = x 3 3 .

Читайте также:  Лучшие способы перевода денег за рубеж

Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫ 1 3 x 2 d x = x 3 3 1 3 = 3 3 3 — 1 3 3 = 26 3 .

Ответ: ∫ 1 3 x 2 d x = 26 3

Произвести вычисление определенного интеграла ∫ — 1 2 x · e x 2 + 1 d x по формуле Ньютона-Лейбница.

Заданная функция непрерывна из отрезка [ — 1 ; 2 ] , значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫ x · e x 2 + 1 d x при помощи метода подведения под знак дифференциала , тогда получаем ∫ x · e x 2 + 1 d x = 1 2 ∫ e x 2 + 1 d ( x 2 + 1 ) = 1 2 e x 2 + 1 + C .

Отсюда имеем множество первообразных функции y = x · e x 2 + 1 , которые действительны для всех x , x ∈ — 1 ; 2 .

Необходимо взять первообразную при С = 0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида

∫ — 1 2 x · e x 2 + 1 d x = 1 2 e x 2 + 1 — 1 2 = = 1 2 e 2 2 + 1 — 1 2 e ( — 1 ) 2 + 1 = 1 2 e ( — 1 ) 2 + 1 = 1 2 e 2 ( e 3 — 1 )

Ответ: ∫ — 1 2 x · e x 2 + 1 d x = 1 2 e 2 ( e 3 — 1 )

Произвести вычисление интегралов ∫ — 4 — 1 2 4 x 3 + 2 x 2 d x и ∫ — 1 1 4 x 3 + 2 x 2 d x .

Отрезок — 4 ; — 1 2 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y = 4 x 3 + 2 x 2 . Получаем, что

∫ 4 x 3 + 2 x 2 d x = 4 ∫ x d x + 2 ∫ x — 2 d x = 2 x 2 — 2 x + C

Необходимо взять первообразную F ( x ) = 2 x 2 — 2 x , тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:

∫ — 4 — 1 2 4 x 3 + 2 x 2 d x = 2 x 2 — 2 x — 4 — 1 2 = 2 — 1 2 2 — 2 — 1 2 — 2 — 4 2 — 2 — 4 = 1 2 + 4 — 32 — 1 2 = — 28

Производим переход к вычислению второго интеграла.

Из отрезка [ — 1 ; 1 ] имеем, что подынтегральная функция считается неограниченной, потому как lim x → 0 4 x 3 + 2 x 2 = + ∞ , тогда отсюда следует, что необходимым условием интегрируемости из отрезка. Тогда F ( x ) = 2 x 2 — 2 x не является первообразной для y = 4 x 3 + 2 x 2 из отрезка [ — 1 ; 1 ] , так как точка O принадлежит отрезку, но не входит в область определения. Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ — 1 ; 1 ] .

Ответ: ∫ — 4 — 1 2 4 x 3 + 2 x 2 d x = — 28 , имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ — 1 ; 1 ] .

Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.

Замена переменной в определенном интеграле

Когда функция y = f ( x ) является определенной и непрерывной из отрезка [ a ; b ] , тогда имеющееся множество [ a ; b ] считается областью значений функции x = g ( z ) , определенной на отрезке α ; β с имеющейся непрерывной производной, где g ( α ) = a и g β = b , отсюда получаем, что ∫ a b f ( x ) d x = ∫ α β f ( g ( z ) ) · g ‘ ( z ) d z .

Данную формулу применяют тогда, когда нужно вычислять интеграл ∫ a b f ( x ) d x , где неопределенный интеграл имеет вид ∫ f ( x ) d x , вычисляем при помощи метода подстановки.

Произвести вычисление определенного интеграла вида ∫ 9 18 1 x 2 x — 9 d x .

Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2 x — 9 = z ⇒ x = g ( z ) = z 2 + 9 2 . Значение х = 9 , значит, что z = 2 · 9 — 9 = 9 = 3 , а при х = 18 получаем, что z = 2 · 18 — 9 = 27 = 3 3 , тогда g α = g ( 3 ) = 9 , g β = g 3 3 = 18 . При подстановке полученных значений в формулу ∫ a b f ( x ) d x = ∫ α β f ( g ( z ) ) · g ‘ ( z ) d z получаем, что

∫ 9 18 1 x 2 x — 9 d x = ∫ 3 3 3 1 z 2 + 9 2 · z · z 2 + 9 2 ‘ d z = = ∫ 3 3 3 1 z 2 + 9 2 · z · z d z = ∫ 3 3 3 2 z 2 + 9 d z

По таблице неопределенных интегралов имеем, что одна из первообразных функции 2 z 2 + 9 принимает значение 2 3 a r c t g z 3 . Тогда при применении формулы Ньютона-Лейбница получаем, что

∫ 3 3 3 2 z 2 + 9 d z = 2 3 a r c t g z 3 3 3 3 = 2 3 a r c t g 3 3 3 — 2 3 a r c t g 3 3 = 2 3 a r c t g 3 — a r c t g 1 = 2 3 π 3 — π 4 = π 18

Нахождение можно было производить, не используя формулу ∫ a b f ( x ) d x = ∫ α β f ( g ( z ) ) · g ‘ ( z ) d z .

Если при методе замены использовать интеграл вида ∫ 1 x 2 x — 9 d x , то можно прийти к результату ∫ 1 x 2 x — 9 d x = 2 3 a r c t g 2 x — 9 3 + C .

Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что

Читайте также:  Воздушный способ окраски это

∫ 9 18 2 z 2 + 9 d z = 2 3 a r c t g z 3 9 18 = = 2 3 a r c t g 2 · 18 — 9 3 — a r c t g 2 · 9 — 9 3 = = 2 3 a r c t g 3 — a r c t g 1 = 2 3 π 3 — π 4 = π 18

Ответ: ∫ 9 18 2 x 2 x — 9 d x = π 18

Интегрирование по частям при вычислении определенного интеграла

Если на отрезке [ a ; b ] определены и непрерывны функции u ( x ) и v ( x ) , тогда их производные первого порядка v ‘ ( x ) · u ( x ) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u ‘ ( x ) · v ( x ) равенство ∫ a b v ‘ ( x ) · u ( x ) d x = ( u ( x ) · v ( x ) ) a b — ∫ a b u ‘ ( x ) · v ( x ) d x справедливо.

Формулу можно использовать тогда, необходимо вычислять интеграл ∫ a b f ( x ) d x , причем ∫ f ( x ) d x необходимо было искать его при помощи интегрирования по частям.

Произвести вычисление определенного интеграла ∫ — π 2 3 π 2 x · sin x 3 + π 6 d x .

Функция x · sin x 3 + π 6 интегрируема на отрезке — π 2 ; 3 π 2 , значит она непрерывна.

Пусть u ( x ) = х , тогда d ( v ( x ) ) = v ‘ ( x ) d x = sin x 3 + π 6 d x , причем d ( u ( x ) ) = u ‘ ( x ) d x = d x , а v ( x ) = — 3 cos π 3 + π 6 . Из формулы ∫ a b v ‘ ( x ) · u ( x ) d x = ( u ( x ) · v ( x ) ) a b — ∫ a b u ‘ ( x ) · v ( x ) d x получим, что

∫ — π 2 3 π 2 x · sin x 3 + π 6 d x = — 3 x · cos x 3 + π 6 — π 2 3 π 2 — ∫ — π 2 3 π 2 — 3 cos x 3 + π 6 d x = = — 3 · 3 π 2 · cos π 2 + π 6 — — 3 · — π 2 · cos — π 6 + π 6 + 9 sin x 3 + π 6 — π 2 3 π 2 = 9 π 4 — 3 π 2 + 9 sin π 2 + π 6 — sin — π 6 + π 6 = 9 π 4 — 3 π 2 + 9 3 2 = 3 π 4 + 9 3 2

Решение примера можно выполнить другим образом.

Найти множество первообразных функции x · sin x 3 + π 6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:

∫ x · sin x x 3 + π 6 d x = u = x , d v = sin x 3 + π 6 d x ⇒ d u = d x , v = — 3 cos x 3 + π 6 = = — 3 cos x 3 + π 6 + 3 ∫ cos x 3 + π 6 d x = = — 3 x cos x 3 + π 6 + 9 sin x 3 + π 6 + C ⇒ ∫ — π 2 3 π 2 x · sin x 3 + π 6 d x = — 3 cos x 3 + π 6 + 9 sincos x 3 + π 6 — — — 3 · — π 2 · cos — π 6 + π 6 + 9 sin — π 6 + π 6 = = 9 π 4 + 9 3 2 — 3 π 2 — 0 = 3 π 4 + 9 3 2

Ответ: ∫ x · sin x x 3 + π 6 d x = 3 π 4 + 9 3 2

Источник

Интегралы для чайников: как решать, правила вычисления, объяснение

  • 4 июня 2021 г.
  • 10 минут
  • 825 147
  • 26

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Изучаем понятие « интеграл »

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Читайте также:  Способ нанесения тату хной

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.

Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов

Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.

Бари Алибасов и группа

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a, b и с:

Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Оцените статью
Разные способы