Существуют два способа расчета индивидуальных индексов
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 9 .
Расчёт индивидуальных индексов .
— область применения и методику расчёта индивидуальных индексов;
— исчислить индивидуальные индексы количественных и качественных показателей;
— формулировать вывод по полученным результатам.
Индексы – это относительные величины сравнения сложных статистических совокупностей или их отдельных единиц. Индекс представляет собой относительный показатель, выражающий соотношение величин какого – либо явления во времени, в пространстве, или же сравнение фактических данных с любым эталоном (планом, прогнозом, нормативом и т.д.).
На практике индивидуальные (частные) индексы принято обозначать символом i (начальная буква латинского слова index ). Знак внизу справа у индексируемого показателя означает период: 0 –базисный, 1 – отчётный, или же уровень показателя: пл – плановый, ф – фактический, н – нормативный. Помимо этого используются определённые символы для обозначения индексируемых показателей:
Символ для обозначения индексируемого показателя
Физический объём продукции (товара) в натуральном выражении
Цена единицы продукции (товара)
Себестоимость единицы продукции
Затраты времени на производство единицы продукции
Выработка продукции в натуральном выражении на одного рабочего или в единицу времени
Удельный расход материала
Выработка продукции в стоимостном выражении на одного рабочего или в единицу времени
Общие затраты времени на производство продукции (Т= t × q ) или численность рабочих (или персонала)
Стоимость продукции определённого наименования, или товарооборот
Издержки производства продукции определённого наименования
Индивидуальными называются индексы, которые отражают результат сравнения однотоварных явлений, т.е. они характеризуют изменение отдельных элементов сложного явления.
По базе сравнения индивидуальные индексы можно разделить на две группы: динамические и территориальные. Динамические индексы отражают изменение явлений во времени. Например, индекс цен изделий отдельных наименований в 2009 году по сравнению с предыдущим годом; индекс физического объёма производства изделий отдельных наименований в апреле по сравнению с мартом текущего года. Динамические индексы бывают базисные и цепные. Территориальные индексы применяются для межрегиональных сравнений: например, индекс цен на бензин марки АИ 92 в Москве по сравнению с Красноярском.
По объекту исследования индивидуальные индексы можно подразделить на индексы : производительности труда, себестоимости, цен, физического объёма продукции, численности персонала и т.д.
По характеру объекта исследования индивидуальные индексы могут быть индексами количественных (объёмных) показателей и индексами качественных показателей. В основе такого деления индексов лежит вид индексируемой величины. Например, к количественным индексам относится индекс физического объёма продукции определённого наименования, а к качественным индексам – индекс цен на изделия определённых наименований.
Перечень и формулы расчёта индивидуальных индексов представим в таблице:
Что показывает индекс
Индивидуальный индекс физического объёма продукции
Во сколько раз возрос (или уменьшился) физический объём продукции в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс цен
Во сколько раз возросла (или уменьшилась) цена единицы продукции (товара) в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс себестоимости
Во сколько раз возросла (или уменьшилась) себестоимость единицы продукции (товара) в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс трудоёмкости
Во сколько раз возросла (или уменьшилась) трудоёмкость единицы продукции в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс выработки (производительности труда)
Во сколько раз возросла (или уменьшилась) производительность труда в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс выработки по трудовым затратам
Во сколько раз возросла (или уменьшилась) производительность труда в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс удельного расхода материала
Во сколько раз возрос (или уменьшился) удельный расход материала в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс стоимости продукции (какого-либо товара)
Во сколько раз возросла (или уменьшилась) стоимость продукции (какого- либо товара) в отчётном периоде по сравнению с базисным периодом
Индивидуальный индекс численности работников
Во сколько раз возросла (или уменьшилась) численность работников в отчётном периоде по сравнению с базисным периодом
Рассмотрим взаимосвязь следующих индексов:
Например: пусть имеются значения показателя Х за два периода
Базисный (предыдущий) период
Отчетный (текущий) период
Хбаз –ф актическое значение показателя в базисном периоде;
Хпл — значение показателя по плану в отчётном периоде;
Хф — фактическое значение показателя в отчётном периоде.
Индекс планового задания (1) =>
Индекс выполнения плана (2) =>
Индекс динамики (3)
Из формулы (1) выразим Хбаз , а из формулы (2) выразим Хф и подставим полученные выражения в формулу (3). Получили формулу (4).
(4)
т.е. произведение цепных индексов равно базисному индексу.
Планом промышленного предприятия предусматривалось увеличить физический объём продукции на 2% по сравнению с базисным периодом.
План выпуска продукции в натуральном исчислении недовыполнен на 0,5%.
Как изменился физический объём выпуска продукции в отчётном периоде по сравнению с базисным периодом?
Необходимо исчислить значение индекса динамики:
Индекс планового задания
Индекс выполнения плана
т е физический объём продукции в отчётном периоде вырос на 1,5% по сравнению с базисным периодом.
При расчёте индексов применяется следующее правило:
Если произведение двух или нескольких показателей представляет собой новый показатель, имеющий реальный экономический смысл, то произведение одноимённых индексов показателей — сомножителей равно индексу нового показателя. Это правило можно представить в таком виде:
[Когда речь идёт об одноимённых индексах, то имеются в виду, например, индексы динамики.]
Пример : Как изменилась стоимость продукции «А», если физический объём продукции уменьшился на 4%, а цена выросла на 2,5% по сравнению с базисным периодом?
Стоимость продукции «А» можно представить в виде произведения физического
объёма продукции q на цену одной единицы продукции p
Аналогичное соотношение можно записать и для индексов динамики этих показателей:
Индекс динамики физического объёма продукции
Индекс динамики цены
Индекс динамики стоимости продукции
т.е. стоимость продукции «А» уменьшилась на 1,6% по сравнению с базисным периодом.
Ещё пример: Как изменилась себестоимость единицы продукции в отчётном периоде по сравнению с базисным периодом, если индекс физического объёма продукции составил 1,017, а сумма затрат на производство этой продукции выросла на 4,8%?
Себестоимость единицы продукции можно исчислить путём деления общей суммы затрат на производство на физический объём продукции :
Аналогичное соотношение можно записать и для индексов динамики этих показателей:
Индекс динамики суммы затрат на производство
Индекс динамики физического объёма продукции задан условием iq =1,017
Индекс динамики себестоимости единицы продукции
т.е. себестоимости единицы продукции увеличилась на 3% по сравнению с базисным периодом.
Источник
Расчет индивидуальных индексов
Простейшим показателем, используемым в индексном анализе, является индивидуальный индекс,который характеризует изменение во времени экономических величин, относящихся к одному объекту, например:
– индекс цены определенного продукта (товара), где p1 и p0 цена товара, соответственно в текущем и в базисном периоде; (14.1)
‑ индекс объема одного определенного продукта (товара); (14.2)
‑ индекс себестоимости единицы отдельного продукта; (14.3)
‑ индекс численности работников и т.д. (14.4)
Все индивидуальные индексы показывают, каково соотношение между отчетным (со знаком «1») и базисным (со знаком «0») показателями или во сколько раз увеличилась (уменьшилась) индексируемая величина. Все индивидуальные индексы по сути являются относительными величинами динамики или коэффициентами (темпами) роста (снижения).
Индивидуальные индексы характеризуют изменение отдельных единиц статистической совокупности. Характерной чертой индексов является то, что все они образуют системы взаимосвязанных показателей. Расчеты индивидуальных индексов просты по своей сущности и выполняются путем вычисления отношения двух индексируемых величин. Индивидуальные индексы могут исчисляться в виде индексного ряда за несколько периодов. Существуют два способа расчета индивидуальных индексов: цепной и базисный.
При цепном способе расчета за базу отношения принимается индексируемая величина соседнего прошлого периода, в этом случае база расчета в ряду постоянно меняется.
При базисном способе расчета за базу принимается индексируемая величина какого-либо отдельного периода.
Расчет общих индексов
В области экономических явлений наряду с индивидуальными индексами, характеризующими изменения единичных элементов, возникает необходимость расчета сводных относительных величин, обобщающих изменения определенного показателя в сложной совокупности, отдельные элементы которой несопоставимы (в физических единицах) и не могут суммироваться. Например, нельзя тонны нефти и тонны стали, а также цены на разные товары (мясо, молоко, обувь, одежду и т.п.).
Для обобщения относительного изменения определенного показателя в сложной совокупности рассчитываются общие (сводные ) индексы.
Общий (сводный) индекс – показатель, измеряющий динамику сложного явления, составные части которого непосредственно несоизмеримы в физических единицах. Например, по данным органов статистики, цены на продовольственные товары в декабре 2008 г. составили 116,1% по отношению к предыдущему месяцу (ноябрю) и 175 % по отношению к декабрю 2007 г.
С помощью общих индексов характеризуется изменение цен на товары, изменение уровня жизни, развитие производства отдельных отраслей и экономики в целом и многое другое.
Индексы могут иметь разный характер. Одни являются объемными (количественными); другие условно можно назвать качественными: они представляют собой показатели, определяемые на какую-то единицу (цена единицы товара, себестоимость единицы продукции, урожайность с 1 га и т.д.). В соответствии с этим и индексы можно подразделить на индексы количественных показателей (индекс физического объема производства, индекс продаж акций и т.п.) и качественных (индекс цен, индекс себестоимости, индекс заработной платы и пр.)
Каждый из этих индексов имеет свои особенности, но любой общий индекс может быть исчислен двумя способами: как агрегатный и как средний из индивидуальных. Рассмотрим оба способа построения (исчисления) общих индексов.
Общий индекс, полученный путем сопоставления итоговых показателей, количественно выражающих сложное явление в отчетном и базисном периодах с помощью соизмерителей, называют агрегатным. Соизмерители необходимы для перехода от натуральных измерителей, разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами и фиксируются на одном уровне ‑ это необходимо для того, чтобы на величине индекса сказывалось лишь влияние фактора, который определяет изменения индексируемой величины. В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цена, количество, себестоимость единицы продукции или затраты на единицу продукции и др.
При сравнении числителя и знаменателя данной формулы в разности определяется показатель абсолютного прироста. При сравнении разности числителя и знаменателя индексного отношения получаем показатель, характеризующий прирост суммы в текущем периоде по сравнению с базисным периодом.
Обозначая объем продукции (товаров через q, а цены – через p, можно представить стоимость продукции в базисном периоде как , а в отчетном как – как
. Сопоставляя эти два показателя, получим индекс стоимости (товарооборота).
(14.5)
Который показывает относительное изменение стоимости продукции как за счет изменения цен, так и за счет изменения объема отдельных товаров.
Если же продукцию двух сравниваемых периодов оценить в одних и тех же неизменных ценах, то очевидно, что стоимость продукции двух периодов будет отличаться лишь за счет изменения объема продукции. Поэтому общий индекс, исчисленный как отношение стоимости продукции двух периодов в одних и тех же ценах, называют агрегатный индекс физического объема(обозначается или
).
В агрегатном индексе физического объема в качестве соизмерителя различных товаров принимаются цены базисного периода p0 или цены, неизменные в течении ряда лет p (такие цены называют также сопоставимыми).
или
(14.6)
где q0 и q1 ‑ объем продукции различных видов соответственно в базисном и отчетном периодах. Отметим, что суммы в числителе и знаменателе имеют вполне реальный смысл:
‑ стоимость продукции базисного периода;
‑ стоимость продукции отчетного периода в базисных ценах.
Разность между числителем и знаменателем агрегатного индекса характеризует изменение в абсолютном выражении результативного показателя за счет изменения индексируемой величины.
Пример. Предположим, предприятие выпускает три вида неоднородной продукции. Данные о производстве и цены за два периода приведем в (табл. 14.1).
Таблица 14.1. – Данные о производстве продукции за 2 периода
Товар | Выработано тыс. единиц | Цена за единицу товара, руб. | Стоимость продукции в базисных ценах, тыс. руб. | ||
Базисный период q0 | Отчетный период q1 | Базисный период р0 | Отчетный период р1 | Базисный период q0p0 | Отчетный период q1p0 |
А | |||||
Б | |||||
В | |||||
ИТОГО | – | – | – | – |
(или 70,2%).
Следовательно, общий объем (выпуск) продукции в отчетном периоде по сравнению с базисным составил 70,2% (или снизился на 29,8%).
А в абсолютном выражении за счет уменьшения выпуска стоимость продукции в отчетном периоде снизилась на 650 тыс. руб., вычитаем из числителя знаменатель
Как уже отмечалось, при построении агрегатного индекса физического объема могут использоваться и другие соизмерители. Так, например, если принять в качестве соизмерителей себестоимость единицы продукции в базисном периоде z0, то агрегатный индекс физического объема можно записать как:
. (14.7)
разность между числителем и знаменателем покажет, как изменились общие затраты (издержки) на производство в связи с изменением выпуска продукции:
Если в качестве соизмерителей принять затраты времени на единицу продукции в базисном периоде, то формула агрегатного индекса физического объема будет иметь вид:
. (14.8)
разность будет характеризовать изменение общих затрат времени на производство продукции за счет изменения объема выпуска.
Агрегатный индекс цен. По аналогии с индексом физического объема для определенного набора товаров (продуктов) может быть построен и агрегатный индекс цен (индекс качественного показателя). При этом рассуждения остаются теми же: если нельзя суммировать цены на различные товары, то можно суммировать и сопоставлять стоимости этих товаров.
Однако, сопоставляя два значения стоимости рq, мы должны показать изменение последней лишь за счет изменения цен р, т.е. необходимо устранить влияние изменения количества производимой (или реализуемой) в разные периоды продукции q на стоимостный показатель продукции. Для этого один и тот же количественный набор продуктов надо оценить в ценах отчетного и базисного периодов и затем сопоставить первую величину со второй. Таким образом, в агрегатном индексе цен индексируемой величиной является, естественно, цена р, а соизмерителем (весами) ‑ количество произведенных (реализованных) товаров q, принятое на уровне базисного или отчётного периода.
Агрегатная формула общего индекса цен была впервые предложена в 1864 г. немецким ученым Э. Ласпейресом. Он предлагал строить агрегатный индекс цен, приняв в качестве весов продукцию базисного периода q0:
(14.9)
В 1874 г. другой немецкий учёный, Г Пааше, предложил строить агрегатный индекс цен по продукции текущего периода q1:
(14.10)
Каждый из этих индексов имеет свои особенности, которым отдается предпочтение в конкретных условиях, использования.
Так, например, индекс Цен Ласпейреса удобен для оперативной (недельной, месячной, квартальной) информации об изменении цен на определенный фиксированный набор товаров, когда пересчет каждый раз на текущий набор (количество) товаров сопряжен с большими затратами, труда и времени. По формуле Ласпейреса рассчитывают индекс потребительских цен (ИПЦ).
В то же время формуле Пааше отдается предпочтение, когда индекс цен рассматривается в системе с индексом стоимости и индексом физического объема. В этом случае, чтобы обеспечивать взаимосвязь между индексом стоимости и индексом физического объема.
Кроме того, при расчете индекса цен; по формуле Пааше, вычитая из числителя знаменатель, легко определить в абсолютном выражении сумму потерь (или прибыли) за счет изменения цен на продукцию отчетного (текущего) периода.
Рассмотрим расчет агрегатных индексов цен на примере.
Таблица 14.2. – Данные о реализации продукции за 2 периода (цифры условные)
Продукт | Ед. измерения | Базисный период | Отчетный период | Стоимость базисного периода, руб | Стоимость отчетного периода, руб | ||
Продано ед. q0 | Цена руб p0 | Продано ед. q1 | Цена руб p1 | q0p0 | q0p1 | q1p0 | q1p1 |
Говядина | Кг | ||||||
Картофель | Кг | 2,5 | |||||
Молоко | л | 3,2 | |||||
Всего |
Чтобы определить, как в среднем изменились цены на все продукты (или какова средняя величина изменения цен), рассчитаем сводный (общий) индекс цен в форме агрегатного индекса:
1) по формуле Ласпейреса (или 116,32%);
2) по формуле Пааше (или 115,9%),
т.е. по формуле Ласпейреса цены по всем продуктам выросли в среднем на 16,3%, а по формуле Пааше ‑ на 15,9% .
Расхождение не очень большое (на 0,4), но все же есть. Какому же индексу отдать предпочтение? На таком уровне исследования (по отдельному хозяйству и совокупности хозяйств) предпочтение следует отдать индексу Пааше, поскольку он показывает реальное изменение стоимости продукции, реализованной в отчетном периоде, за счет изменения цен. В этом индексе числитель ‑ реальная величина, фактическая выручка, полученная от реализации продукции в отчетном периоде, а знаменатель ‑ условная величина, показывающая, какой была бы выручка, если бы продукция отчетною периода продавалась по базисным ценам. Разность между ними, (56200 ‑ 48500 = 7700 руб.), показывает в данном случае, какую прибыль дополнительно получило хозяйство при реализации продукции в отчетном периоде за счет роста цен.
В формуле же индекса цен Ласпейреса в знаменателе содержится реальная выручка (стоимость) от реализации в базисном периоде, а в числителе ‑ условная величина, характеризующая, какой была бы выручка от реализации продукции базисного периода по ценам отчетного периода. Разность практически не представляет интереса, так как эта величина слишком отвлеченная: она показывает, насколько изменилась бы выручка (стоимость) в прошлом (базисном) периоде, если бы базисная продукция была реализована по текущим (отчетным) ценам.
Кроме того, при расчете индекса цен по формуле Пааше, легко увязываются изменения трех взаимосвязанных показателей: стоимости (выручки), объема реализации и цен. Так, по данным табл. 14.2 индекс стоимости продукции
(или 122,2%), т.е. стоимость продукции (выручка от продажи) в отчетном периоде увеличилась на 22,2%, что составило в абсолютном выражении 10200 руб. (56200 – 46000).
Индекс физического объема реализаций по данным табл. 14.2
(или 105,4%).
В абсолютном выражении увеличение стоимости за счет изменения объема реализации составило 2500 руб. (48500 – 46000)
Таким образом, имеет место увязка индексов (относительного изменения показателей): (14.11)
А также абсолютных изменений: в нашем примере 10200 = 7700 + 2500,т.е. общее изменение стоимости продукции равно сумме приростов за счет изменения цен и за счет изменения объема.
В начале XX в. американский экономист И. Фишер предложил вместо формул индексов цен Ласпейреса и Пааше использовать среднюю геометрическую из них, т.е. корень квадратный из произведения индексов иен Ласпейреса и Пааше:
(14.12)
Этот индекс назван им идеальным, поскольку в нем не отдается предпочтение ни продукция базисного периода, ни продукции текущего периода.
Кроме того, этот индекс «обратим» во времени, т.е. если рассчитывать индекс базисного периода к отчетному, он будет равен обратной величине первоначального индекса (т.е. отчетного периода к базисному). Другими словами, перемножение таких, «обратных» индексов дает единицу.
Однако индекс Фишера из-за его формальности и трудности экономической интерпретации используется редко, в основном при территориальных сопоставлениях.
Мы рассмотрели расчет агрегатных индексов физического объема и цен как наиболее типичных представителей агрегатных индексов соответственно для количественных и качественных индексируемых показателей.
По аналогии можно записать агрегатные индексы для многих других показателей.
1. Понятие о статистических индексах, их классификация.
2. Индивидуальные и общие индексы.
3. Агрегатный индекс как исходная форма индекса.
4. Назовите способы определения сумм экономического эффекта от изменения цен и количества проданных товаров.
5. По данным статистических сборников, СМИ и т.п. исчислите индивидуальные и общие индексы.
Источник