Сульфатная коррозия бетона способы защиты

Сульфатная коррозия бетона. Защита бетона от коррозии.

смотреть цены на бетон
заказать бетон
Звоните! 8 (499) 408-98-18; 8 (963) 762-49-84

Коррозия бетона

Защищать бетон от коррозии можно и нужно. Тем более что современные технологии защиты бетона от коррозии позволяют обезопасить цементный камень от разрушения даже в том случае, если бетонная конструкция эксплуатируется в условиях воздействия целого комплекса негативных факторов внешней среды.

Виды коррозии бетона

Разрушение бетона под воздействия факторов окружающей среды (осадки, агрессивные химикаты, блуждающие электротоки) называется коррозией бетона, и в зависимости от характера протекания процесса делится

1. Растворение цементного камня.

Такой вид коррозии бетона характерен для конструкций, эксплуатирующихся на открытом воздухе, например для высокопрочной марки бетона М450 и регулярно подвергающихся воздействию атмосферных осадков. В процессе данного типа коррозии из структуры материала вымывается и растворяется гашеная известь. Как результат – нарушение структуры бетона и снижением прочности конструкции.

2. Кислотная коррозия бетона.

Кислотная (химическая) коррозия характерна для бетонных конструкций, испытывающих постоянный контакт с водной средой или слабокислыми растворами. В процессе коррозии в порах цементного камня откладывается нерастворимый карбонат кальция, постепенно увеличивая объем бетона вплоть до его растрескивания и разрушения. При длительном контакте бетонной конструкции с природными водами, содержащими большое количество сульфатов, имеет место сульфатная коррозия бетона. Для сульфатной коррозии бетона также характерно наращивание объема цементного камня и рост напряжения за счет отложения в порах материала нерастворимых продуктов химических реакций. Результатом сульфатной коррозии бетона, так же как и карбонатной, становится растрескивание цементного камня, снижение его прочности и ухудшение эксплуатационных свойств.

3. Электрохимическая коррозия.

Данный тип коррозии характерен для железобетонных конструкций. При этом коррозия металла и бетона, как правило, взаимосвязаны. Воздух и влага проникают к арматуре сквозь поры бетонной конструкции. Коррозия арматуры вызывает рост напряжений в структуре цементного камня, и как следствие, становится причиной начала или ускорения протекания процесса коррозии бетона.

Защита бетона от коррозии

Хронологически защита бетона от коррозии делится на два типа: первичная и вторичная. Первичная защита предусматривает, как правило, лишь превентивные меры, например, введение в состав бетона специальных добавок. Наиболее перспективными на сегодняшний день для защиты бетона от коррозии считаются такие добавки как мылонафт, сульфитно-дрожжевая бражка и ГКЖ-94. Вторичная защита бетона от коррозии предполагает гидроизоляцию бетона, то есть: нанесение на поверхность бетона защитных смесей, мастик, уплотняющих покрытий, лакокрасочных, акриловых материалов. Достаточно эффективна и облицовка бетонных поверхностей полиизобутиленовыми, нефтебитумными или др. плитами. На практике наиболее эффективной оказывается комплексная защита бетона от коррозии, когда методы первичной защиты сочетаются с гидроизоляционными технологиями.

при условии разовой заливки бетона не менее 100м3! подробнее

Источник

Сульфатная коррозия бетона способы защиты

Сульфатная коррозия бетона состоит в том, что в жидкой фазе цемента всегда присутствуют и могут активно взаимодействовать с агрессивной средой ионы кальция (Са») и гидроокисла (ОН’). Имеются и другие ионы, но они обычно подавляются большим количеством извести.

Действие катионов среды оказывается наиболее агрессивным в том случае, если они способны образовывать с ионами гидроокисла плохо растворимые или малодиссоциированные соединения, удаляемые из сферы реакции в осадок, воду или газ. Сюда относятся катионы металлов, образующие слабые основания (гидраты окислов магния, цинка, алюминия, железа, меди, аммония).

Образование этих соединений типа Mg(OH)2 и других приводит к резкому понижению щелочности в бетоне и далее к растворению твердой извести, а затем к гидролизу устойчивых до этого силикатов и алюминатов.

Действие катионов натрия, калия, кальция и бария незначительно.
Анионы, образующие нерастворимые кальциевые соли (СО3«; С2О4» ; PO4«; SiO3«;), будут уплотнять поры бетона и, следовательно, играть положительную роль.
Особое положение занимают сульфатные анионы (SO4«). При известной концентрации они могут образовать с ионами кальция двуводный гипс, а вместе с высокоосноными алюминатами и гидросульфо-алюминат:
Са» + SO4 + 2Н20 — CaS04 • 2Н20;
3CaS04 + ЗСаО • Аl2O3 + 31Н20 — СаО •Аl2O3 • 3CaS04 • 31Н20.

Читайте также:  Выберите способ начисления амортизации нематериальных активов

Особенностью этих реакций является то, что и гипс и гидросульфо-алюминат кристаллизуются с большим количеством воды при значительном увеличении объема.

Если такое образование происходит в порах уже сложившейся структуры цементного камня, то создаются большие внутренние напряжения, приводящие бетон в конструкциях к характерному растрескиванию или отслаиванию поверхностных слоев.

Гидросульфоалюминат кристаллизуется в виде характерных игл, что послужило поводом назвать его «цементной бациллой».

Описанные разрушения бывают не всегда. Если образование гидросульфоалюмината протекает еще до формирования структуры бетона в жидкой фазе или в растворе присутствуют в значительном количестве ионы хлора, усиливающие растворимость алюминатов и сульфоалюмината, опасных напряжений может не возникать. Этим объясняется относительно невысокая агрессивность к цементному бетону морской воды, в которой содержится большое количество сульфатов, но еще большее количество хлоридов.

Если анионы хлора присутствуют в воде совместно с катионами магния, то последние, образуя с известью Mg(OH)2 и СаСl2, понижают концентрацию извести, а вместе с этим создают возможность существования высокоосновных гидроалюминатов и образование сульфоалюминатов в опасной форме.

Наличие в растворе хлористого кальция приводит к образованию неопасных хлоралюминатов и плохо растворимых хлорокисей кальция. На этом основаны специальные приемы введения в бетон большого количества хлоридов. При этом сильно понижается точка замерзания воды, что позволяет работать с бетоном в зимнее время, а самый бетон уплотняется (получается так называемый «холодный» бетон). Однако одновременно с этим было установлено, что в таком бетоне ионы хлора усиливают коррозию арматуры и поэтому широкого применения, особенно в армированных конструкциях, «холодный» бетон не получил.

Сульфатная коррозия бетона может усиливаться в том случае, если одновременно с катионами кальция цемента будут связываться и анионы гидроксила:
Са» + 20Н’ — Са (ОН)2.
Поэтому наиболее опасными являются сернокислые соли, образованные слабыми основаниями, особенно сульфат аммония
Са (ОН)2 + (NH4)2 S04 = CaS04 • 2Н20 + NH3.

При увеличении концентрации растворимых сульфатов сульфо ллюминатная коррозия переходит в гипсовую. Степень агрессивности, а также и скорость разрушения цементного камня при этом сильно возрастают.

При наличии значительных концентраций катионов магния происходит обменная реакция с разрушением структурной гидроокиси кальция и образование гипса:
Са (ОН)2 + MgS04 + 2Н20 = Mg (ОН)2 + CaS04 • 2Н2О.

Рассмотрение механизма сульфатной коррозии бетона позволяет понять и практикуемые мероприятия по ее смягчению:

  • а) возможное уменьшение количества извести (например, использованием белитовых, пуццолановых или глиноземистых цементов);
  • б) уменьшение содержания высокоосновных алюминатов, что и практикуется в так называемых сульфатостойких портландцементах, где допустимый процент С3А снижается до 5% вместо обычно имеющегося содержания в 8—12%;
  • в) введение большого процента гипса в состав цемента при помоле — в этом случае гидросулвфоалюминаты образуются в жидкой фазе еще до формирования структуры.

Источник

Проблема сульфатной коррозии в современном бетоноведении

Хотите получать свежие статьи на свою почту?

Все свежие статьи публикуются в электронном журнале ВесьБетон.

Подписка на журнал бесплатная, процедура подписки занимает одну минуту! Подписаться!

Журнал «ВесьБетон» — всегда свежая и профессиональная информация о производстве и применению бетонов и других строительных материалов, добавках, оборудовании и многом другом.

Особенности журнала ВесьБетон:

  1. Публикуются статьи и книги о производстве и применении строительных материалов, добавок.
  2. Тираж более 10 500 профессиональных строителей.
  3. Подписаны только строители, технологи и производители, так как публикуется только профессиональная информация.
  4. Выходит 2 раза в месяц.
  5. Честный тираж! Журнал распространяется через независимый канал Subscribe.ru
  6. Обсуждение статей на форумах

Подписаться (бесплатно)!

Считается, что основной характеристикой бетона, определяющей его качество, является предел прочности при сжатии, но этот показатель не остается постоянным в течение длительного срока эксплуатации конструкций. Воздействие окружающей среды оказывает влияние на прочность бетонных изделий. Что происходит с бетоном в случае негативного воздействия внешней среды? Насколько интенсивным будет снижение прочности бетона? Можно ли распознать начальные признаки коррозионного разрушения материала, чтобы принять меры для защиты конструкции. Изучение этих и многих других вопросов позволяет разрабатывать методы защиты бетона от коррозии, а также оценивать необходимость их применения в тех или иных условиях эксплуатации, давать технико-экономическую оценку их эффективности, определять кинетику процесса с тем, чтобы обеспечить своевременную реконструкцию.

Читайте также:  Как определить способы рифмовки

Термин «сульфатная коррозия» используется для характеристики разрушения бетона при взаимодействии сульфатных сред различных типов с цементным камнем, при этом стойкость материала во многом определяется условиями твердения и особенностями сульфатного воздействия. Такой вид коррозии возможен при наличии в воздействующей среде сульфат-ионов, но кроме этого, он развивается и при воздействии пресных вод на бетоны с внутренними источниками сульфатов.

Продукты взаимодействия агрессивной среды и цементного камня – к ним в первую очередь относятся эттрингит и таумасит – обладают экспансивным характером. Оба минерала имеют подобные кристаллические структуры, но таумасит представляет собой силикатсодержащую фазу, тогда как эттрингит – алюминатную. В бетоне таумасит образуется в результате реакции между силикатами кальция цемента, карбоната кальция и сульфатов.

Таблица 1. Кристаллическая структура эттрингита и таумасита

а0=11,23 А; с0=21,44 А;

а0=10,90 А; с0=18,29 А;

а=4,582; 3,792; 2,714 А

Обозначения: а0, с0 – параметры элементарной ячейки кристаллов; n0, nе – показатели светопреломления одноосных кристалло

Рис. 1. Трещинообразование бетона при возникновении в нем системы эттрингит-таумасит

Например, в Великобритании в начале 80-х годов прошлого века для строительства ряда мостов использовались местные заполнители, содержащие сульфаты, поэтому для повышения коррозионной стойкости бетонных конструкций проектировщики применяли сульфатостойкий цемент. В середине 90-х часть конструкций этих мостов разрушилась. Для анализа причин разрушения была сформирована правительственная комиссия во главе с профессором Л. Кларком. По результатам работы комиссии был сформирован отчет, в котором главной причиной разрушения конструкций признано образование таумасита.

Образование и эттрингита, и таумасита сопровождается увеличением объема твердой фазы кристаллических новообразований, которое вызывает внутренние напряжения, являющиеся причиной коррозионного разрушения бетона при воздействии сульфатов. Однако совсем не обязательно, что воздействие сульфатов на бетонные конструкции является причиной образования экспансивных фаз, а кроме того, эттрингитообразование не всегда является причиной внутренней экспансии. Когда эттрингит образуется в свежеприготовленной бетонной смеси и его распределение относительно гомогенно, то он не является причиной разрушения бетона. Такой тип эттрингита, согласно международной классификации, называется первичным (Early Ettringite Formation – EEF). Примером образования первичного эттрингита является реакция двуводного гипса с трехкальциевым алюминатом в присутствии воды:

3CaO · Al2O3 + 3(CaSO4·3H2O) + 26H2O = 3CaO·Al2O3·3CaSO4·32H2O.

В процессе этой реакции эттрингит адсорбируется на поверхности цементных зерен, препятствуя проникновению к ним воды и адгезии цементного геля, таким образом выступая в качестве регулятора сроков схватывания.

С другой стороны, когда эттрингит образуется в гораздо более поздние сроки (в течение нескольких месяцев или даже лет), возникает неоднородная экспансия в жесткой бетонной структуре, что является основой появления микротрещин и развития процессов трещинообразования. Согласно международной классификации такой эттрингит называется поздним или вторичным (Delayed Ettringite Formation – DEF). Разрушающий эффект, который создается в результате образования вторичного эттрингита, зависит от концентрации реагирующих компонентов на локальных участках бетонной структуры и кристаллической формы новообразований.

Кроме этого, выделяют два типа вторичного эттрингита в зависимости от того, воздействуют ли сульфаты на бетон из внешней среды либо присутствуют в бетоне в виде внутренних сульфат источников. Первый тип определяется международным термином «внешнее воздействие сульфатов» (External Sulfate Attack – ESA), второй – «внутреннее воздействие сульфатов» (Internal Sulfate Attack – ISA). Внешнее воздействие сульфатов происходит при фильтрации агрессивной среды через толщу бетона. Внутреннее воздействие сульфатов имеет место при действии на бетон жидких сред, не содержащих сульфатов, но при наличии в материале внутренних сульфат источников, например таких, как высоко-сульфатсодержащие или гипсосодержащие заполнители. По данным отдельных исследователей, внутреннее воздействие сульфатов и связанное с ним образование эттрингита характерно только для бетонов, прошедших тепловую обработку и эксплуатирующихся длительное время в изменяющихся атмосферных условиях.

Рассмотрим механизм разрушения бетонных конструкций в результате развития процессов коррозии третьего вида. Под действием сульфатсодержащих сред, – например грунтовых вод, которые содержат сульфаты кальция, магния, натрия, калия, – в бетонных конструкциях происходит образование эттрингита. Продукты реакции характеризуются увеличением объема твердой фазы по сравнению с реагирующими компонентами. Накапливаясь на стенках пор и капилляров, кристаллы постепенно заполняют все внутреннее пространство, создавая тем самым напряжения. Под действием этих напряжений вначале происходит образование микротрещин, и кристаллизация эттрингита продолжается в этих трещинах. Таким образом, увеличивается расклинивающее воздействие на бетон, появляются макротрещины. Характер разрушений при кристаллизации эттрингита зависит от множества факторов, в частности, от температурных условий, концентрации сульфатсодержащих сред и величины рН, которая определяет габитус кристаллов.

Особенность таумасита состоит в том, что в его структуре содержится шестивалентный кремний. Поэтому он образуется при относительно низких температурах (ниже +15 °С) и наличии в растворе ионов SO42- , CO32-. Наши исследования показали, что таумасит наиболее интенсивно образуется при температуре +2…+6 °С. Как уже отмечалось ранее, кристаллическая структура таумасита идентична эттрингиту, однако характер разрушения бетона при кристаллизации этих веществ различен. Таумасит образуется в мелкокристаллической форме и не создает столь значительных растягивающих усилий, как эттрингит, но дополнительные напряжения могут возникать за счет адсорбции им влаги. Кроме этого, образование таумасита не ограничено содержанием алюминатов, и поэтому процесс его кристаллизации может продолжаться значительное время, результатом чего является снижение прочности цементного камня. При эксплуатации сооружений в реальных условиях температура окружающей среды изменяется в широких пределах, поэтому эттрингит и таумасит образуются в кристаллической смеси, что в свою очередь не только усложняет процессы коррозии, но и ускоряет разрушение материала.

Условия, в которых протекает коррозионный процесс, определяют соотношения этих компонентов экспансивной фазы, а, следовательно, и характер разрушения материала. В университете г. Веймара под руководством профессора Й. Штарка были проведены многочисленные исследования, показавшие, что эттрингит образуется в различных формах. На контакте цемента с заполнителем и поверхностях самого заполнителя он образует нитевидные волокна. При свободной кристаллизации в крупных порах или на открытой поверхности бетона эттрингит образует скопления в виде сферолитов или неупорядоченных наростов. Если эттрингит кристаллизуется в мелких порах и капиллярах, то он образует параллельно упорядоченные скопления.

На изменение формы и размеров кристаллов эттрингита большое влияние оказывает концентрация гидроксида кальция в поровой жидкости. Профессор П. Мехта из университета г. Беркли (США) описывает 2 модификации эттрингита, которые сильно отличаются по габитусу и размерам. К первому типу он относит игольчатообразные кристаллы длинной от 10 до 100 мкм и толщиной порядка 3–5 мкм. Этот тип кристаллов образуется при низкой концентрации Ca(OH)2. По мнению Мехты, этот тип эттрингита не вызывает возникновение напряжений, большие кристаллы образуются в крупных порах, дополнительно уплотняя и упрочняя бетон. Второй тип эттрингита образуется при высоких значениях рН бетона. К эттрингиту второго типа относятся маленькие палочкообразные кристаллы длинной лишь 1–2 мкм и толщиной до 0,2 мкм. При эксплуатации бетона вследствие выщелачивания гидроксида кальция рН поровой жидкости может снизиться, что приведет к перекристаллизации мелкокристаллического эттрингита второго типа в крупнокристаллическую форму. При этом длина кристаллов может вырасти до 100 раз, что, соответственно, вызовет и рост напряжений в материале.

Таумасит в бетоне образуется преимущественно в мелкокристаллической форме. При разрушении материала, связанного с кристаллизацией таумасита в устьях трещин и контактах материала с заполнителем можно наблюдать белую эмульсию. Эта эмульсия и есть таумасит. Переход гидросиликатов кальция в таумасит сопровождается снижением прочности цементного камня и на отдельных участках может привести к полному его разрушению. Кроме этого, мелкокристаллические образования как таумасита, так и эттрингита благодаря адсорбции воды создают дополнительное расширяющее воздействие.

Для того чтобы установить различия в характере разрушений при образовании эттрингита и таумасита, были изготовлены 2 серии образцов кубиков с высотой ребра 100 мм (для исследования изменения предела прочности при сжатии) и партия кубиков с высотой ребра 25 мм (для микроскопических исследований), а так же партия балочек размером 40х40х160 мм (для исследования изменения линейных размеров и прочности). Одна партия образцов помещалась в условия, стимулирующие образование эттрингита, другая – таумасита. Образцы балочки и кубики с высотой ребра 25 мм изготавливались из мелкозернистого бетона, большие кубики из тяжелого бетона. Составы бетонов приведены в таблице 2. После твердения в нормальных условиях в течение 28 суток образцы помещались в 5 % раствор Na2SO4. Испытания проводились в течение 3-х лет.

Таблица 2. Составы бетонов для проведения исследований

Источник

Читайте также:  Способы защиты человека от цунами
Оцените статью
Разные способы
Эттрингит