Стирол способы получения химические свойства

Cтирол

Существует ошибочное мнение о том, что стирол — это какое-то химическое вредное вещество. Однако, это совсем не так. Вещество стирол вполне природное, оно находится в составе большого количества природных объектов. К примеру, стиролом богата земляника, виноград.

История стирола

Стирол известен еще со времен Древнего Египта. Тогда люди пользовались смолой дерева Ликвидамбар восточный (Liquidambar orientalis). Она выступала ароматическим веществом в парфюмерии и лекарствах. Сегодня, ароматическая смола, которую собирают и применяют в медицинских целях, в качестве антисептика, для ингаляций, в парфюмерии и мыловарении, формируется из текучих выделений дерева, в местах повреждений на его коре. Такую смолу называют стиракс. А вот за запах отвечает именно стирол.
В далеком 1839 году немецкий аптекарь Eduard Simon выделил в виде жидкости чистое вещество из стиракса и обнаружил, что через некоторое время стирол стал более плотным. Таким образом, состоялось открытие природного полимера стирола — полистирола.
В 20-м веке начался промышленный синтез стирола. С того времени полистирол прочно закрепился в нашей жизни. Сегодня полистирол это:

  • одноразовая посуда
  • пищевые лотки
  • упаковка йогурта
  • пластиковая обшивка камеры бытового холодильника
  • детские игрушки
  • корпуса радио- и телеаппаратуры
  • светильники и многое другое.

Полистирол является полностью безвредным веществом. Тем не менее, при определенных условиях из него может выделяться стирол, который давно признали слабо токсичным веществом. Как известно, большие концентрации стирола приводят к возникновению раздражения слизистых оболочек верхних дыхательных путей, головной боли, расстройства центральной и вегетативной нервной системы.

Стирол — химические свойства

Стирол является бесцветной жидкостью со специфическим запахом. Она практически не растворяется в воде, зато отлично растворяется в органических растворителях, и является хорошим растворителем полимеров.
Данное вещество с легкостью подвергается окислению, вступает в реакции присоединения с галогенами. Кроме того, он вступает в реакции полимеризации с образованием твердой стекловидной массы — полистирола, и сополимеризации с разными мономерами. Реакция полимеризации начинается еще при комнатной температуре (часто сопровождаясь взрывом), по этой причине во время хранения стирол должен быть стабилизирован антиоксидантами (например, третбутилпирокатехином, гидрохиноном).
Вдыхать пары стирола категорически запрещено. Кроме того, данное вещество оказывает отрицательное влияние на функцию печени и почек, на кровеносную и нервную системы.
Руководство предприятий и лабораторий, в которых ведется работа со стиролом, обязано обеспечить своих сотрудников резиновыми перчатками, а при очень высоких концентрациях ядовитых паров в воздухе – противогазами.
Стирол причислен к ядам общетоксического действия. В высоких дозах он характеризуется раздражающими, мутагенными и канцерогенными свойствами, а также источает резкий и неприятный запах. Вследствие хронической интоксикации у работников возможны заболевания центральной и периферической нервной систем, а также системы кроветворения, пищеварительного тракта, происходят нарушения азотисто-белкового, холестеринового и липидного обмена. Среди женщин отмечены случаи нарушений в репродуктивной системе.

Получение стирола

Долгие годы с момента открытия стирола ученые пытались ответить на вопрос: как получить стирол в больших объемах? В результате различных экспериментов ученые нашли несколько подходящих реакций синтеза. На сегодняшний день главным промышленным методом получения стирола является каталитическое дегидрирование этилбензола в токе водяного пара при 500-630 0С. По этой схеме производство стирола выглядит следующим образом:

Еще один промышленный метод заключается в окислении этилбензола в присутствии марганцового катализатора до ацетофенона, который далее гидрируют под давлением на медно-хромово-железном катализаторе до метилфенилкарбинола, с последующим дегидрированием на окиси алюминия или титана:

Сырьё для синтеза стирола – это этилбензол, получаемый алкилированием бензола:

Американским корпорациям UOP, Lummus Crest и Monsanto принадлежат самые новейшие разработки в сфере синтеза стирола. Технологию дегидрирования этилбензола в стирол стиро-плас (styro-plus) запатентовали ученые из фирмы UOP.
Данная реакция является классическим процессом дегидрирования этилбензола в присутствии высокотемпературного водяного пара в условиях вакуума. Обязательным условием является обработка смеси на специальном катализаторе между двумя стадиями дегидрирования. Специалисты UOP нашли наиболее подходящее соотношение между степенью перехода этилбензола в стирол и селективностью процесса. Вещество, которое получается вследствие реакции дегидрирования, подвергается фракционированию. Таким образом, синтезируется товарный стирол. Основным условием является разбавление ингибитором, чтобы минимизировать неконтролируемую полимеризацию.
Одним из ответвлений технологии фирм ABB Lummus Crest Inc. и UOP стала процедура дегидрирования smart (смарт). Такой синтез происходит в жидкой фазе на базе двухступенчатого реактора, в присутствии цеолитного катализатора. Стоит отметить, что большая часть существующих установок работает по схеме стиро-плас. Тем не менее, сегодня все чаще создают установки именно по жидкофазной схеме. Главная отличительная черта процесса smart заключается в том, что требуемое для реакции тепло подается при помощи селективного окисления водорода в прослойке катализатора.
В числе прочих методов синтеза стирола можно отметить реакцию совместного производства стирола и оксида пропилена. В тоже время, по уровню удельных капитальных вложений метод дегидрирования характеризуется определенными преимуществами. Легкость, довольно низкий уровень капиталоемкости, постоянно высокий спрос на стирол для синтеза полистирола и смол АБС стали движущей силой быстрого роста мощностей по выпуску стирола.
Среди самых крупных предприятий по выпуску стирола стоит отметить:

  • Dow Chemical (1661 тыс. т/год)
  • BASF (1560 тыс. т/год),
  • Lyondell (1250 тыс. т/год),
  • Shell Chemical (1270 тыс. т/год),
  • Nova Chemical (1031 тыс. т/год).
Читайте также:  Что такое лужение горячим способом

Наибольшие мощности по синтезу стирола в Российской Федерации расположены на Нижнекамском нефтехимическом комбинате, а также в Уфе, Салавате, Перми и Ангарске.

Стирол — применение

Основное направление использования стирола – это создание огромного количества полимеров. Среди них:

  • полистирол
  • пенопласт (вспененный полистирол)
  • модифицированные стиролом полиэфиры
  • пластики АБС (акрилонитрил-бутадиен-стирол) и САН (стирол-акрилонитрил).


Кроме этого, стирол является составляющим компонентом напалма.
В результате реакции сополимеризации бутадиена и стирола получаются бутадиен-стирольные каучуки, которые активно применяют в шинном производстве, а также при изготовлении формовой и неформовой резиновой продукции. Вследствие высокого уровня радиационной стойкости, бутадиен-стирольные каучуки используют в процессе создания резин, которые противостоят гамма-излучению.
Если стружку из полистирола растворить в стироле, то получается отличный клеевой состав для полистирола. Тепло и остатки полимеризаторов действуют таким образом, что клеевой шов в короткие сроки полимеризуется и становится полностью незаметным. В конце получаем монолит из двух деталей.

Источник

Конспект лекций по курсу «Мономеры» для бакалавров, обучающихся по специальности (стр. 3 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

На практике используют 3 вида ПВХ:

— винилпласты – жесткие материалы на основе ПВХ, содержащие стабилизирующие добавки и смазывающие вещества, которые выпускаются в виде листов, труб и пленок;

-пластикаты – мягкие материалы на основе стабилизированного и пластифицированного ПВХ, количество пластификатора в которых может достигать 50%. Введение пластификатора увеличивает эластичность и морозостойкость ПВХ (-50 0С). Пластикаты выпускаются в виде гранул, пленок, шлангов.

— пластизоли – это дисперсии эмульсионного ПВХ в жидких пластификаторах – в качестве которых используют диалкилфталаты, сложные эфиры адипиновой, себациновой, фосфорной кислот. Количество пластификаторов составляет от 30 до 80%. Пластизоли используют для получения искусственной кожи, клинки.

ПТФЭ – политетрафторэтилен (тефлон); ПВДФ – поливинилиденфторид.

1.3.1. Получение стирола

Получение стирола сводится к осуществлению следующих реакций:

Алкилирование бензола этиленом большей частью проводится при атм. давлении, без механического перемешивания, при 90 0С в присутствии безводного хлористого алюминия как катализатора. Расход AlCl3 2,5г на 100г этилбензола.

Другой способ алкилирования бензола состоит в проведении реакции с этиленом в присутствии фосфорной кислоты, нанесенный на кизельгур. Температура реакции не должна превышать 275 0С, т. к. катализатор быстро покрывается коксом. Давление реакции при 63 атм. Соотношение бензол : этилен — 4:1.

Вторую реакцию осуществляют с использованием различных катализаторов при разных условиях.

1. Один из катализаторов дегидрирования состоит в основном из окиси цинка (76-86%) с добавками окиси алюминия (2,3-8%), окиси кальция (4,7-5,1%), окиси магния (0-5%), сульфата калия (2-3%) и хромата калия (2-3%). Пары этилбензола с водяным паром (1/0,8-1/2) подвергают дегидрированию в колонне при Т=6000С.

2. Другим катализатором дегидрирования являются катализаторы N 1707 и N 105, применяемые для дегидрирования бутанов в бутадиены. Дегидрирование также проводится в присутствии водяного пара, который предотвращает коксообразование и одновременно служит для подачи необходимого для реакции тепла. Дегидрирование проводят при Т=625 0С, время пребывания на катализаторе 0,5 сек, выход при однократном проходе 37%.

Читайте также:  Фразеологизм как способ представления культуры

3. Третий способ по реакции:

Стирол – жидкость бесцветная, Ткип=145 0С, Тпл=-30,6 0С и d=0,9021 г/см3.

1.3.2. Химические свойства стирола

Наличие активной олефиновой связи в боковой цепи стирола – главное направление атак на эту цепь

Стирол легче, чем олефины, присоединяет спирты:

Однако при нитровании стирола наряду с главным продуктом этой реакции – ω-нитростиролом образуются оба продукта в ядро о- и п — стиролы;

что свидетельствует об электроннооднородном характере виниловой группы.

1. Реакция Дильса-Альдера

Стирол может функционировать в реакции Дильса-Альдера и как диенофил, и как диен. При этом как диеновый компонент он проявляет себя только в реакциях с активным диенофилами (см. выше). При взаимодействии стирола с малеиновым ангидридом на 1-ой стадии образуется промежуточный аддукт циклоприсоединения, который на заключительной стадии претерпевает 2-ое циклоприсоединение по Дильсу-Альдеру и «еновую» реакцию.

1.3.3. Полимеризация стирола и его сополимеры

Атактический ПС получают радикальной полимеризацией стирола в присутствии пероксидных или азосоединений в качестве инициаторов. В промышленности полимеризацию осуществляют в массе, в эмульсии (в воде), реже в суспензии. ММ= тыс. наибольшую ММ и лучший комплекс прочностных характеристик имеет эмульсионный ПС. Марки ПС, полученного полимеризацией в массе, имеют обозначение ПСМ, суспензионные – ПСС, эмульсионные – ПСЭ. Выпускается стабилизированным в виде гранул или порошка.

1. Ударопрочный полистирол (УПС) – продукт привитой сополимеризации стирола с бутадиеновым или бутадиенстирольным каучуком. Процесс сополимеризации с каучуком проводят в растворе стирола в присутствии пероксидных инициаторов. Молекулярная масса равна 70-100 тыс. При этом одновременно проходят гомополимеризация стирола и привитая сополимеризация стирола с каучуком. Доля сополимера около 15%. Марочный ассортимент определяется способом получения и назначением УПС. При полимеризации в массе буквенное обозначение марки – УПМ, при суспензионной – УПС.

УПС можно считать композиционным, содержащим матрицу жесткого полистирола (ММ=70-100 тыс.) с частицами каучука размером 1-5 мкм, окруженными тонким слоем привитого сополимера.

2. Бутадиен-стирольные каучуки – статистические сополимеры бутадиена и стирола (СКС) или α-метилстирола (СКМС) с содержанием последних 21-25%. На 50% и более бутадиен присоединяется в трансконфигурации, остальное в конфигурации 1,4-цис и 1,2. Получают СКС в основном методом эмульсионной сополимеризации при 50 или 5 0С. Каучуки с содержанием стирола 21-25% обозначаются как CRC-30 или СКМС-30. Выпускаются каучуки с 8-10% стирола (CRC-10) с повышенной морозостойкостью или с 40-50% стирола (CRC-50) с повышенной жесткостью. ММ (СКС)=150-400тыс. Применяются как каучуки общего назначения.

Акрилонитрил – прозрачная жидкость с удушливым запахом, кипящая при Т=77,3 0С. Он быстро полимеризуется, но может быть стабилизирован добавлением олеата меди, диоксидифенила и других ингибиторов.

1.4.1. Получение акрилонитрила

1. Промышленное производство.

Сырьем для производства акрилонитрила является жидкая окись этилена и синильная кислота, процесс проводят в водной среде в присутствии диэтиламина и NаОН как катализатор. Реакция протекает в 2 стадии:

Дегитратацию образующегося нитрила оксипропановой кислоты проводят каталитически в жидкой фазе при 200-280 0С или в газовой фазе над активной окисью алюминия. Выход акрилонитрила после отделения от воды и перегонки на 2-ой стадии 75-78%. Выход этиленциангидрина на 1-ой стадии достигает 90%.

2. Присоединение синильной кислоты к ацетилену (метод Курца)

Процесс получения акрилонитрила по этому методу протекает гладко. Работу ведут в присутствии раствора хлористой меди (I) – Сu2Cl2 и хлорида аммония, слабо подкисленного соляной кислотой, соотношение Сu2Cl2:NH4Cl=1:0,8; рН=3,5. При температуре реакции 75 0С промышленный выход достигает 85%.

3. Окисление 1-аминопропена-2 (аллиламина). Катализатор карбид кремния, на который нанесен 1% серебра.

Процесс примечателен тем, что в этом случае отпадает необходимость использования синильной кислоты.

4. Действие цианидов щелочных металлов на этиленхлоргидрин.

1.4.2. Химические свойства акрилонитрила

Акрилонитрил – соединение, обладающее высокой реакционной способностью, которое присоединяется ко всем соединениям, имеющим подвижный атом водорода. Иначе говоря способность цианогруппы активировать кратную углерод-углеродную связь делает акрилонитрил активным соединением по отношению к нуклеофильным атакам. Именно благодаря этому акрилонитрил легко присоединяет в щелочной среде самые разнообразные нуклеофилы – спирты, тиолы, аминосоединения и т. д. Эти реакции называются реакциями цианоэтилирования.

Читайте также:  Способ передачи знания с искусстве

2. Акрилонитрил легко вступает в реакцию Дильса-Альдера в качестве диенофила:

3. Восстановление акрилонитрила. При восстановлении акрилонитрила на свинцовом катоде в присутствии в качестве восстановителя LiAlH4 образуется аллиламины:

4. Гидролиз акрилонитрила:

1.4.3. Полимеризация акрилонитрила и его сополимеры

1. Полиакрилонитрил получают радикальной полимеризацией акрилонитрила в присутствии пероксидных или азоинициаторов в атмосфере азота. Полимеризацию проводят в водной эмульсии и редко в массе. Выпускают в виде белого порошка или лаков. Молекулярная масса равна 35-100тыс. Полиакрилонитрил (ПАН) – жесткоцепной неплавкий полимер с плотностью равной г/м3. При Т=220-230 0С ПАН разлагается с выделением большого количества газообразных продуктов (в основном аммиак), при Т=270 0С выделяется НСN. Используется в основном для изготовления волокон из раствора.

Значительно чаще акрилонитрил используется для сополимеризации с бутадиеном и бутадиенстирольным каучуком для получения эластомеров.

1. Бутадиен-нитрильные каучуки – статистические сополимеры бутадиена с акрилонитрилом. Бутадиен присоединяется преимущественно в положении 1,4-транс, содержание 1,2-структуры не превышает 10%.

Получают эмульсионной полимеризацией. Марочный ассортимент синтетического каучука нитрильного (СКН) определяется содержанием акрилонитрилов, которое в разных сортах составляет 17-20, 27-30, 36-40, иногда до 50%, а соответствующие марки каучука СКН-18, СКН-26. СКН-40, СКН-50. ММ=200-300тыс. применяются как каучуки спецназначения.

2. АБС-пластики – продукт привитой сополимеризации стирола с акрилонитрилом и бутадиеновым или бутадиенстирольным каучуком. Процесс сополимеризации мономеров с каучуком проводят в эмульсии в присутствии пероксидных инициаторов. Одновременно протекает сополимеризация стирола с акрилонитрилом. В конечном продукте содержится 65% стирола, 20% акрилонитрила и 15% каучука.

Глава 2. Мономеры для поликонденсации

Поликонденсация, наряду с полимеризацией является одним из методов синтеза полимеров и представляет собой ступенчатый процесс. Как и в цепных процессах образования макромолекулы, строение и реакционная способность мономеров играет решающую роль для реакций поликонденсации. При этом основными в поликонденсационных процессах являются понятия реакционного центра, функциональной группы и функциональности.

Реакционным центром называют активную часть молекулы (обычно один атом), непосредственно участвующую в химическом взаимодействии.

Функциональной группой называют часть молекулы мономера, определяющую его принадлежность к тому или иному классу соединений и имеющую характерную реакционную способность. Функциональная группа определяет поведение мономера в химических реакциях. Так, в функциональных группах – NH2 и ОН реакционными центрами являются атомы водорода. В принципе в зависимости от условий и в разных реакциях одна и та же функциональная группа может иметь различные реакционные центры. Так, при нейтрализации реакционным центром в группе – СООН является атом водорода, а при реакции со спиртом – атом кислорода группы – ОН.

Важной характеристикой мономеров является их функциональное число реакционных центров (или функциональной группы) в одной молекуле. От значения функциональности зависит возможность образования линейных, разветвленных или трехмерных макромолекул. При поликонденсации бифункциональных мономеров образуются линейные цепи, если же один или оба исходных мономера не может отражать его истинной функциональности в конкретных условиях процесса, различают возможную, практическую и относительную функциональности мономера. Возможная функциональность Фв – это общее число активных групп в молекуле мономера, для данного соединения эта величина постоянная, определяемая его химическим строением. Практическая функциональность Фпр – число функциональных групп, способных вступать в реакции в данных условиях (Т, концентрация, наличие катализатора). Эта величина может менятся в зависимости от условий процесса и от строения мономера. Отношение Фв/Фпр называют онтосительной функциональностью Фотн.

Формирование функциональной группы может происходить и в процессе синтеза аолимера методом поликонденсации, как в случае образования фенолформальдегидных полимеров из фенола и формальдегида, которые с точки зрения функциональности непригодны для синтеза полимеров как малофункциональными соединениями.

2.1. Классификация мономеров. Сомономеры.

Гомо — и гетерополиконденсация

Применяемые для синтеза методом поликонденсации мономеры разделяют на 2 группы: мономеры для гомополиконденсации и мономеры для гетерополиконденсации.

Основные группы поликонденсационных мономеров

Источник

Оцените статью
Разные способы