Статистика базисный способ это

Статистика: Учебник / Под ред. Елисеевой.- М., 2006. С. 168-172

Оглавление

Показатели динамики (цепные и базисные)

Показатели динамики нашли широкое применения для формирования более наглядного представления о тенденции изменения уровней динамического ряда. Рост и снижение уровня ряда могут происходить либо равномерно, либо ускоренно, либо замедленно. Аналитические возможности показателей динамики раскрывает следующий фрагмент из учебника «Статистика»:

«Уровни временного ряда могут изменяться в самых разных, направлениях: они могут возрастать или убывать, повторять ранее достигнутый уровень. Интенсивность их изменения бывает различной. Уровни ряда могут изменяться быстрее или медленнее. Для характеристики развития явления во времени применяются следующие показатели:

  • абсолютные приросты (у);
  • темпы роста (Тр);
  • темпы прироста (снижения) (Тр);
  • абсолютное ускорение или замедление ();
  • относительное ускорение (Тр).

Абсолютный прирост (абсолютное изменение) уровней ряда рассчи­тывается как разность двух уровней. Он показывает, на сколько единиц уровень одного периода больше или меньше уровня другого периода.

В зависимости от базы сравнения абсолютные приросты могут быть цепными и базисными:

Если каждый последующий уровень ряда динамики сравнивается со своим предыдущим уровнем, то прирост называется цепным. Если же в качестве базы сравнения выступает за ряд лет один и тот же период, то прирост называется базисным.

Один и тот же по величине абсолютный прирост может означать разную интенсивность изменения уровней (см. табл. 9.4).

Абсолютные приросты, тыс. шт.

Темпы роста, %

Темпы прироста, %

цепные

базисные

цепные

базисные

базисные

В нашем примере в 1996 и 1998 гг. абсолютное изменение объема продукции было одинаковым — 5 тыс. шт., но интенсивность рос­та объема произведенной продукции в эти годы была различной: в 1996 г. прирост в 5 тыс. ед. по сравнению с предыдущим годом составил 25%, а в 1998 г. по сравнению с предыдущим годом — лишь 14,3%. Аналогично один и тот же прирост в 10 тыс. ед. для 1997 и 1999 гг. означает разную интенсивность роста: в 1997 г. — прирост составил по сравнению с предыдущим годом, 40%, а в 1999 г. – 25%.

Интенсивность изменения уровней временного ряда характеризуется темпами роста и прироста.

Темп роста есть отношение двух уровней ряда. Как и абсолютные приросты, темпы роста могут рассчитываться как цепные и как базисные:

Если база сравнения по периодам меняется, то найденные темпы роста называются цепными. Если же база сравнения по периодам неизменна (y0), то темпы роста называются базисными.

Темпы роста, выраженные в коэффициентах, принято называть коэффициентами роста:

В анализе используется один из этих показателей: либо темп роста, либо коэффициент роста, ибо экономическое их содержание одно и то же, но по-разному выражено: в % (Тр) и в разах р). Так по данным табл. 9.4 можно сделать вывод, что наибольшая интенсивность роста была достигнута в 1997 г., когда темп роста составил 140%, или в 1,4 раза превысил уровень предыдущего года.

Если цепные темпы роста характеризуют интенсивность изменения уровней от года к году (от месяца к месяцу), то базисные темпы роста фиксируют интенсивность роста, (снижения) за весь интервал времени между текущим и базисным уровнями. Так в примере базисный темп роста за весь период с 1996 по 1999 г. составил 250% (1995 г. взят за базу сравнения).

Темп прироста есть отношение абсолютного прироста к предыдущему уровню динамического ряда (цепной показатель) и к уровню, принятому за базу сравнения по динамическому ряду (базисный показатель):

По данным табл. 9.4, темп прироста для 1999 г. составит: цепной — 25% (·100) и базисный – 150% (·100), т.е. в 1999 г. объем продукции увеличился по сравнению с 1998 г. на 25%, а в целом за весь рассматриваемый период прирост составил 150%.

Между цепными и базисными показателями изменения уровней ряда существует следующая взаимосвязь:

  • сумма цепных абсолютных приростов равна базисному приросту (см. табл. 9.4, где в итоговой строке накопленный прирост за 1996 — 1999 гг. – 30 тыс. шт. – совпадает с базисным абсолютным приростом для 1999 г.);
  • произведение цепных коэффициентов роста равно базисному или равносильное этому деление рядом стоящих базисных коэффициентов роста друг на друга равно цепным коэффициентам роста. Так, по данным табл. 9.4, имеем:

, или 250% – базисный темп роста;

200/175=1,143, или 114,3% – цепной коэффициент роста для 1998 г. Взаимосвязь цепных и базисных темпов (коэффициентов) роста позволяет при анализе, если необходимо, переходить от цепных показателей к базисным и наоборот;

  • темп прироста связан с темпом роста: (см. табл. 9.4, где темпы прироста меньше темпов роста на 100). Поэтому при анализе обычно приводится какой-то один из них: темп роста либо темп прироста. Зная цепные темпы прироста, можно определить базисный темп прироста. Для этого нужно от темпов прироста перейти к темпам (коэффициентам) роста и далее воспользоваться указанной выше взаимосвязью коэффициентов роста.

Так, например, изменение цен на потребительские товары и услуги за I квартал 2001 г. оказалось в Санкт-Петербурге следующим (см. гл. 9.5).

Изменение цен (в % к предыдущему месяцу)

В целом за I квартал прирост цен составит:

, т.е. в марте 2001 г. по сравнению с декабрем 2000 г. цены выросли на 7,4%.

Чтобы знать, что скрывается за каждым процентом прироста, рассчитывается абсолютное значение 1% прироста как отношение абсолютного прироста уровня за интервал времени к темпу прироста за тот же промежуток времени:

или

Иными словами, абсолютное значение 1% прироста в данном периоде есть сотая часть достигнутого уровня в предыдущем периоде (см. табл. 9.4, последнюю графу). В связи с этим расчет абсолютного значения 1% прироста базисным методом не имеет смысла, ибо для каждого периода это будет одна и та же величина – сотая часть уровня базисного периода.

Абсолютные приросты показывают скорость изменения уровней ряда в единицу времени. Если они систематически возрастают, то ряд развивается с ускорением. Величина абсолютного ускорения определяется как т.е. по аналогии с цепным абсолютным приростом, но сравниваются между собой не уровни ряда, а их скорости. По табл. 9.4 в нашем примере ускорение имело место лишь в 1997 и в 1999 гг., когда =10-5=5 тыс. шт.

Если систематически растут цепные темпы роста, то ряд развивается с относительным ускорением. Относительное ускорение можно определить как разность следующих друг за другом темпов роста или прироста:

или

Полученная величина выражается в процентных пунктах (п.п.). По данным табл. 9.4, относительное ускорение имело место лишь в 1997 г.– 15 процентных пунктов по сравнению с предыдущим годом.

Относительное ускорение может быть измерено и с помощью коэффициента опережения.

Коэффициент опережения определяется как отношение последующего темпа роста к предыдущему:

В нашем примере коэффициент опережения для 1997 г. составил:

140/125=1,12, что означает, что в 1997 г. темп роста был в 1,12 раза больше, чем в 1996 г.

Коэффициенты опережения принято рассчитывать в сравнительном анализе нескольких рядов динамики. При параллельном изучении нескольких рядов динамики обычно их приводят к одному основанию путем расчета базисных темпов роста с одинаковой по времени базой сравнения для всех рядов. Это позволяет наглядно видеть, для какого ряда интенсивность изменения уровней наибольшая. Сравнивая далее наибольшие темпы роста с наименьшими, определяют коэффициенты опережения в развитии одного явления по отношению к другому (табл. 9.6).

Динамика доходов предприятия за 1-е полугодие 2004 г.(тыс. руб.)

Месяцы

Прибыль от реализации продукции

Прибыль от продажи прочих актов

Источник

Абсолютный прирост, темпы роста: понятие, цепной и базисный способы расчета.

Базисные показатели характеризуют итоговый результат всех изменений в уровнях ряда от периода базисного уровня до данного (i-го) периода.

Цепные показатели характеризуют интенсивность изменения уровня от одного периода к другому в пределах того промежутка времени, который исследуется.

Абсолютный прирост выражает абсолютную скорость изменения ряда динамики и определяется как разность между данным уровнем и уровнем, принятым за базу сравнения.

Абсолютный прирост (базисный)

где yi — уровень сравниваемого периода; y0 — уровень базисного периода.

Абсолютный прирост с переменной базой (цепной)

где yi — уровень сравниваемого периода; yi-1 — уровень предшествующего периода.

Темп роста Ki определяется как отношение данного уровня к предыдущему или базисному, показывает относительную скорость изменения ряда. Если коэффициент роста выражается в процентах, то его называют темпом роста. Если абсолютные уровни исследуемого явления снижаются, то темп роста меньше единицы (меньше 100 %), однако он никогда не может быть отрицательным числом.

Коэффициент роста базисный

Коэффициент роста цепной

Темп проста находится как коэффициент роста умноженный на 100%

53. Темпы прироста: понятие, цепной и базисный способы расчета. Абсолютное значение 1% прироста. Коэффициент опережения развития.

темп прироста показывает на сколько процентов целого увеличился или уменьшился соответствующий уровень ряда динамики по сравнению с каким-либо достигнутым уровнем. Темп прироста вычисляется путём вычитания из темпа роста единицы (если используется коэффициент роста) или 100 процентов (если темп роста выражен в процентах).

Формулы для вычисления темпа прироста:

В отличие от темпов роста, темпы прироста могут быть и отрицательными числами. В этом случае они показывают, на какую часть целого или на сколько процентов снизился уровень исследуемого явления.

Между цепным и базисным темпами прироста нет математической взаимосвязи.

Абсолютное значение 1 процента прироста (снижения) выражает реальное содержание темпа прироста (снижения). На практике могут встречаться значительные темпы прироста, но совсем ничтожное абсолютное увеличение явления и наоборот — небольшие темпы прироста, но значительное увеличение. Абсолютное значение 1 процента прироста (снижения) рассчитывается путём деления суммы цепных абсолютных приростов или базисного абсолютного прироста на темп прироста:

Коэффициент опережения– это отношение базисных темпов роста двух динамических рядов за одинаковые отрезки времени Обозначив коэффициент опережения Kоп, базисные коэффициенты роста первого ряда динамики – через К 1 , второго – К 11 , Тогда:

Данный коэффициент показывает, во сколько раз будет быстрее расти уровень одного ряда динамики по сравнению с другим Отношение абсолютного прироста к темпу прироста представляет собой абсолютное значение одного процента по формуле:

Источник

Читайте также:  Соленье груздей горячим способом
Оцените статью
Разные способы
Годы Произведено продукция, тыс. шт. Абсолютное значении 1 % прироста, тыс. шт.