Статистические ряды распределения способы представления

Статистические ряды распределения способы представления

ЛЕКЦИЯ № 4. Статистические ряды распределения и статистические таблицы

1. Статистические ряды распределения

В результате обработки и систематизации первичных данных статистического наблюдения получают группировки, называемые рядами распределения.

Статистические ряды распределения представляют собой упорядоченное расположение единиц изучаемой совокупности на группы по группировочному признаку.

Различают атрибутивные и вариационные ряды распределения.

Атрибутивный – это ряд распределения, построенный по качественным признакам. Он характеризует состав совокупности по различным существенным признакам.

По количественному признаку строится вариационный ряд распределения. Он состоит из частоты (численности) отдельных вариантов или каждой группы вариационного ряда. Данные числа показывают, насколько часто встречаются различные варианты (значения признака) в ряду распределения. Сумма всех частот определяет численность всей совокупности.

Численности групп выражаются в абсолютных и относительных величинах . В абсолютных величинах выражается числом единиц совокупности в каждой выделенной группе, а в относительных величинах – в виде долей, удельных весов, представленных в процентах к итогу.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды распределения. В дискретном вариационном ряде распределения группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

В интервальном вариационном ряде распределения группиро–вочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения.

Вариационные ряды состоят из двух элементов: частоты и варианты.

Вариантой называют отдельное значение варьируемого признака, которое он принимает в ряду распределения.

Частота – это численность отдельных вариант или каждой группы вариационного ряда. Если частоты выражены в долях единицы или в процентах к итогу, то их называют частостями.

Правила и принципы построения интервальных рядов распределения строятся по аналогичным правилам и принципам построения статистических группировок. Если интервальный вариационный ряд распределения построен с равными интервалами, частоты позволяют судить о степени заполнения интервала единицами совокупности. Для проведения сравнительного анализа заполненности интервалов определяют показатель, который будет характеризовать плотность распределения.

Плотность распределения – это отношение числа единиц совокупности к ширине интервала.

2. Графическое изображение рядов распределения

Анализ рядов распределения можно проводить на основе их графического изображения. Линейчатые и круговые диаграммы строятся для отображения структуры совокупности.

Применяются вместе с диаграммами и такие линии, как полигон, кумулята, огива, гистограмма. При изображении дискретных вариационных рядов используется полигон.

Полигон – ломаная кривая, строится на основе прямоугольной системы координат, когда по оси Х откладываются значения признака, а по оси У – частоты.

Гладкая кривая, соединяющая точки – это эмпирическая плотность распределения.

Кумулята – ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси Х откладываются значения признака, а по оси У – накопленные частоты.

Для дискретных рядов на оси откладываются сами значения признака, а для интервальных – середины интервалов.

На основе гистограмм можно строить диаграммы накопленных частот с последующим построением интегральной эмпирической функции распределения.

3. Статистические таблицы

В виде статистических таблиц оформляются результаты сводки и группировки материалов наблюдения.

Статистическая таблица – это особый способ краткой и наглядной записи сведений об изучаемых общественных явлениях. Статистическая таблица позволяет охватить материалы статистической сводки в целом, она также является системой мыслей об исследуемом объекте, излагаемых цифрами на основе определенного порядка в расположении систематизированной информации.

По внешнему виду статистическая таблица представляет собой ряд пересекающихся горизонтальных и вертикальных линий, образующих по горизонтали строки, а по вертикали – графы (столбцы, колонки), которые в совокупности составляют как бы скелет таблицы.

В образовавшиеся внутри таблицы клетки записывается информация. Составленную таблицу принято называть макетом таблицы, в котором мысленно определяются в деталях цель обследования, объем разработки материалов сводки.

Статистическая таблица имеет свое подлежащее и сказуемое. Подлежащее таблицы показывает, о каком явлении идет речь в таблице, и представляет собой группы и подгруппы, которые характеризуются рядом показателей. Сказуемым таблицы называются числовые показатели, с помощью которых характеризуется объект, т. е. подлежащее таблицы.

Показатели, образующие подлежащее, располагают в левой части таблицы, а показатели, составляющие сказуемое, помещают справа.

Составленная и оформленная статистическая таблица должна иметь общий, боковые и верхние заголовки. Общий заголовок обычно располагается над таблицей и выражает ее основное содержание. Помещенные слева боковые заголовки раскрывают содержание строк подлежащего, а верхние – вертикальных граф (сказуемого таблицы),

В коммерческой деятельности разрабатываются и составляются различные статистические таблицы, которые в зависимости от построения подлежащего делятся на три вида: перечневые, групповые и комбинационные.

Простые таблицы не содержат в подлежащем систематизации изучаемых единиц статистической совокупности.

По характеру представляемого материала эти таблицы бывают собственно перечневые, территориальные и хронологические.

Простая таблица в подлежащем содержит перечисление единиц изучаемой совокупности.

Сведения простой таблицы применяют и для оценки изменения какого–либо явления во времени. Хронологическую таблицу можно составлять за любые по величине отрезки времени или на моменты, отстоящие друг от друга по времени на различную длину Таблицы, в подлежащем которых приводится перечень территорий (районов, областей и т. п.), называются перечневыми территориальными.

Читайте также:  Выберите другой способ получения заказа связной сбер

Групповые статистические таблицы дают более информативный материал для анализа изучаемых явлений благодаря образованным в их подлежащем группам по существенному признаку или выявлению связи между рядом показателей.

Комбинационными называют статистические таблицы, которые имеют в подлежащем группировку по двум или более группи–ровочным признакам, связанным между собой.

С помощью групповых и комбинационных таблиц можно изучать состав явлений, а также связь и зависимость числовых показателей сказуемого от группировочных признаков подлежащего.

Комбинационная таблица устанавливает взаимное действие на результативные признаки (показатели) и существующую связь между факторами группировки.

Одними из ответственных моментов построения статистических таблиц являются разработка сказуемого, определение его содержания, правильное установление связи между группировоч–ными признаками и показателями, их характеризующими.

Сказуемое, находясь во взаимосвязи с подлежащим таблицы должно быть построено так, чтобы с помощью системы его показателей можно было получить полную характеристику выделенных групп, охватить их существенные черты.

Сказуемое статистических таблиц бывает простым и сложным. При простой разработке показатели сказуемого располагаются последовательно один за другим. Распределяя показатели на группы по одному или нескольким признакам в определенном сочетании, получают сложное сказуемое.

4. Основные правила составления таблиц

Таблица должна быть составлена компактно, т. е. быть небольшой по размеру и легко обозримой.

Общий заголовок таблицы должен кратко выражать ее основное содержание. В нем стараются указать время, территорию, к которым относятся данные, единицы измерения, если они выступают едиными для всей совокупности.

Строки подлежащего и графы сказуемого располагают в виде частных слагаемых с последующим подытоживанием по каждому из них.

Для удобства анализа таблицы при большом числе строк подлежащего и граф сказуемого возникает потребность в нумерации тех из них, которые заполняются данными.

При заполнении таблиц нужно использовать следующие условные обозначения: при отсутствии явления пишется (-) прочерк, если нет информации о явлении, ставится многоточие (… ) или пишется: «нет сведений».

Одинаковая степень точности, обязательная для всех чисел, обеспечивается соблюдением правил их округления (от 0,1 до 0,01 и т. д.). Когда одна величина превосходит другую многократно, полученные показатели динамики лучше выражать не в процентах (%), а в разах.

Если в таблице с отчетными данными приводятся сведения расчетного порядка, то нужно сделать соответствующую оговорку.

Графы и строки должны содержать единицы измерения, соответствующие поставленным в подлежащем и сказуемом показателям. При этом используются общепринятые сокращения единиц измерения, например: чел., руб. и т. д. Если графы имеют единую единицу измерения, то она выносится в заголовок таблицы.

Для удобной работы с цифровым материалом числа в таблицах следует расставлять в середине граф, одно под другим: единицы под единицами, запятая под запятой и т. д., четко соблюдая при этом их разрядность.

В таблицу можно включать примечания, в которых будут указываться источники данных, более подробное содержание показателей и другие необходимые пояснения.

В наше время необходимо научиться составлять и пользоваться статистическими таблицами.

Для того чтобы проанализировать данные, которые содержит таблица, необходимо прежде ознакомиться с названием таблицы заголовками ее граф и строк, установить, на какую дату и к какой территории относятся зафиксированные в таблице статистические данные, обратить внимание на единицы измерения и установить, какие процессы характеризуются средними и относительными величинами.

Анализ статистической таблицы логичнее начинать с общего итога, который позволяет получить общую характеристику совокупности, затем переходить к изучению данных отдельных строк и граф, т. е. к оценке частей изучаемого объекта, исследуя при этом вначале наиболее важные, а потом уже и все остальные элементы таблицы.

Источник

Понятие статистических рядов распределения и их виды

Результаты сводки и группировки материалов статистического наблюдения оформляются в виде статистических рядов распределения. Статистические ряды распределения представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Они характеризуют состав (структуру) изучаемого явления, позволяют судить об однородности совокупности, границах ее изменения, закономерностях развития наблюдаемого объекта. В зависимости от признака статистические ряды распределения делятся на:

Атрибутивные ряды образуются по качественным признакам, которыми могут выступать занимаемая должность работников торговли, профессия, пол, образование и т.д.

Распределение работников предприятия по образованию.

Количество работников

Образование работников
абсолютное в % к итогу
высшее 20 15,4
неполное высшее 25 19,2
среднее специальное 35 26,9
среднее 50 38,5
ИТОГО 130 100

В данном примере группировочным признаком выступает образование работников предприятия (высшее, среднее). Данные ряды распределения являются атрибутивными, поскольку варьирующий признак представлен не количественными, а качественными показателями. Наибольшее число составляют работники со средним образованием (порядка 40%); остальные работники распределяются на группы по данному качественному признаку: со средним специальным образованием — 25%; с неполным высшим — 20%; с высшим — 15%.

Читайте также:  Масло рукколы для волос способ применения

Вариационные ряды строятся на основе количественного группировочного признака. Вариационные ряды состоят из двух элементов: вариант и частот.

Варианта — это отдельное значение варьируемого признака, которое он принимает в ряду распределения.

Они могут быть положительными и отрицательными, абсолютными и относительными.

Частота — это численность отдельных вариант или каждой группы вариационного ряда. Частоты, выраженные в долях единицы или в процентах к итогу, называются частостями. Сумма частот называется объемом совокупности и определяет число элементов всей совокупности.

Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100 %. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Вариационные ряды в зависимости от характера вариации подразделяются на дискретные (прерывные) и интервальные (непрерывные). Дискретные ряды распределения основаны на дискретных (прерывных) признаках, имеющих только целые значения (например, тарифный разряд рабочих, число детей в семье).

Интервальные ряды распределения базируются на непрерывно изменяющемся значении признака, принимающем любые (в том числе и дробные) количественные выражения, т.е. значение признаков таких рядах задается в виде интервала.

При наличии достаточно большого количества вариантов значений признака первичный ряд является труднообозримым, и непосредственное рассмотрение его не дает представления о распределении единиц по значению признака в совокупности. Поэтому первым шагом в упорядочении первичного ряда является его ранжирование – расположение всех вариантов в возрастающем (убывающем) порядке.

Для построения дискретного ряда с небольшим числом вариантов выписываются все встречающиеся варианты значений признака , а затем подсчитывается частота повторения варианта . Ряд распределения принято оформлять в виде таблицы, состоящей из двух колонок (или строк), в одной из которых представлены варианты, а в другой — частоты.

Для построения ряда распределения непрерывно изменяющихся признаков, либо дискретных, представленных в виде интервалов, необходимо установить оптимальное число групп (интервалов), на которые следует разбить все единицы изучаемой совокупности.

Как правило, средние величины рассчитываются для получения обобщенных количественных характеристик уровня какого либо варьирующего признака по совокупности однородных по основным свойствам единиц конкретного явления или процесса. В статистике все средние величины обозначаются как `X. Существует несколько видов средних величин.

Основной средней величиной является средняя степенная. Она имеет следующий вид:

(1)

где `Х — средняя величина;

X — меняющаяся величина признака варианты;

n — число признаков или вариант;

m — показатель степени средней.

В зависимости от величины показателя степени средней она принимает следующие виды:

а) Средняя арифметическая невзвешенная, где m = 1. Она имеет вид:

(2)

б) Средняя арифметическая взвешенная. Она имеет вид:

(3)

где f — частоты или веса

Особым видом средних величин являются структурные средние. Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Мода- это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.

В интервальном ряду распределения мода находится по следующей формуле:

(4)

где: минимальная граница модального интервала;

— величина модального интервала;

<частоты модального интервала, предшествующего и следующего за ним.

Модальный интервал определяется по наибольшей частоте. Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и т.д.

Медиана — варианта, находящаяся в середине ряда распределения.

Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы.

В случае если вариационный ряд имеет число значений вариант четное, то расчет медианы производится по следующей формуле:

(5)

где — варианты, находящиеся в середине ряда

В интервальном ряду распределения медиана рассчитывается следующим образом:

(6)

где: — нижняя граница медианного интервала;

— величина медианного интервала;

— полусумма частот ряда;

— сумма накопленных частот, предшествующих медианному интервалу;

— частота медианного интервала.

Структурные средние величины (мода и медиана) имеют довольно большое значение в статистике и широкое применение. Мода является именно тем числом, которое в действительности встречается наиболее часто. Медиана имеет важные свойства для анализа явлений: она обнаруживает типичные черты индивидуальных признаков явления, и, вместе с тем, учитывает влияние крайних значений совокупности. Медиана находит практическое применение в маркетинговой деятельности вследствие особого свойства – сумма абсолютных отклонений чисел ряда от медианы есть величина наименьшая:

Читайте также:  Получение кумола все способы

Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного расположения частот вариационного ряда.

Ряды распределения удобно изучать с помощью графического метода.

Статистический график– это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. Представление данных таблиц в виде графика производит более сильное впечатление, чем цифры, позволяет лучше осмыслить результаты статистического наблюдения, правильно их истолковывать, значительно облегчает понимание статистического материала, делает его наглядным и доступным. Это, однако, вовсе не означает, что графики имеют лишь иллюстративное значение. Они дают новое знание о предмете исследования, являясь методом обобщения исходной информации.

Значение графического метода в анализе и обобщении данных велико. Графическое изображение позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случае установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры явлений, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравнительные характеристики и отчетливо виды основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.

Используются диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, радикальные и др. Выбор вида диаграммы зависит в основном от особенностей исходных данных, цели исследования.

Используются диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, радикальные и др. Выбор вида диаграммы зависит в основном от особенностей исходных данных, цели исследования. Например, если имеется ряд динамики с несколькими неравноотносящимися уровнями во времени, то часто для наглядности используют столбиковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не годны для изображения большого числа уровней, так как громоздки. Когда число уровней в ряду динамики велико, целесообразно применять линейные диаграммы, которые воспроизводят непрерывность процесса развития в виде непрерывной ломанной линии. Кроме того, линейные диаграммы удобно использовать: если целью исследования является изображение общей тенденции и характера развития явления; когда на одном графике необходимо изобразить несколько динамических рядов с целью их сравнения; если наиболее существенным является сопоставление темпов роста, а не уровней.

Основное назначение структурных диаграмм заключается в графическом представлении состава статистических совокупностей, характеризующихся как соотношение различных частей каждой из совокупностей. Состав статистической совокупности графически может быть представлен с помощью как абсолютных, так и относительных показателей. В первом случае не только размеры отдельных частей, но и размер графика в целом определяются статистическими величинами и измеряются в соответствии с изменениями последних. Во втором – размер всего графика не меняется (так как сумма всех частей любой совокупности составляет 100%), а меняются только размеры отдельных его частей. Графическое изображение состава совокупности по абсолютным и относительным показателям способствует проведению более глубокого анализа и позволяет проводить международные сопоставления и сравнения социально – экономических явлений.

В качестве графического образа для изображения структуры совокупностей применяются прямоугольники – для построения столбиковых и полосовых диаграмм и круги – для построения секторных диаграмм.

Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Показатели вариации характеризуют колеблемость отдельных значений вариант около средних величин. Показатели вариации определяют различия индивидуальных значений признака внутри изучаемой совокупности. Существует несколько видов показателей вариации:

а) Размах вариации R представляет собой разность между максимальным и минимальным значениями признака. Размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду.

б) Среднее линейное отклонение. Линейное отклонение учитывает различия всех единиц изучаемой совокупности.

в) Дисперсия — показатель вариации, выражающий средний квадрат отклонений вариант от средних величин в зависимости от образующего вариационного фактора. Показатель дисперсии более объективно отражает меру вариации на практике.

г) Среднее квадратическое отклонение. Среднее квадратическое отклонение является показателем надежности средней: чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю статистическую совокупность.

д) Показатель вариации. Показатель вариации отражает тенденцию развития явления, т.e. действие главных факторов. Показатель вариации выражается в % или коэффициентах.

Рассмотрим методику построения интервального ряда распределения и его применение на примере, представленном в расчетной части данной работы.

Источник

Оцените статью
Разные способы