Средства измерений классификация по способу получения информации
Классификация видов измерений
Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения – это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.
Косвенные измерения – отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.
Совокупные измерения – сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.
Совместные измерения – это измерения двух или более неоднородных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.
По используемому методу измерения – совокупности приемов использования принципов и средств измерений различают:
- метод непосредственной оценки;
- метод сравнения с мерой;
- метод противопоставления;
- метод дифференциальный;
- метод нулевой;
- метод замещения;
- метод совпадений.
По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.
Источник
Основные понятия об измерениях и средствах измерений
Все измерения классифицируют (рис. 8.2):
по способу получения информации;
по характеру изменения получаемой информации в процессе измерения;
по количеству измерительной информации;
по отношению к основным единицам.
ρ
 масс различных сочетаний гирь.</p> <div style=)
Читайте также: Способы использования сообщений передач
Совместные измерения, при которых одновременно проводятся измерения двух или нескольких не одноименных величин для определения зависимости между ними, например, зависимость длины объекта от температуры.
По характеру изменения получаемой информации в процессе измерений измерения подразделяются на статические и динамические.
Статические измерения — это такие измерения, когда измеряемая величина принимается за неизменную на протяжении времени измерения, например, измерение размеров земельного участка.
Динамическое измерение — это измерение, в процессе которого измеряемая величина изменяется.
Развитие средств измерений и повышение их чувствительности позволяет сегодня обнаружить изменение величин, ранее считавшихся постоянными, поэтому разделение измерений на динамические и статические можно считать условным.
По количеству измерительной информации измерения делятся на однократные и многократные.
Однократные измерения выполняются один раз, а многократные позволяют получить результат из нескольких следующих друг за другом измерений одного и того же объекта. При однократных измерениях показания средств измерений являются результатом измерений, погрешность используемого средства измерений определяет погрешность результата измерения. Применение многократных измерений позволяет повысить точность измерения до определенного предела.
По отношению к основным единицам измерения делятся на абсолютные и относительные.
Абсолютные измерения основаны на прямых измерениях одной или нескольких основных величин или использовании значений физических констант. Например, определение массы в килограммах, количества вещества—в молях, частоты — в герцах.
Относительные измерения — это измерения отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную. Например, относительная влажность определяется как отношение упругости водяного пара, содержащегося в воздухе, к упругости насыщенного пара при той же температуре, и выражается в процентах.
Основные характеристики и критерии качества измерений
К основным характеристикам измерений, которые определяют и качество измерений, относятся: принцип, метод, погрешность результатов измерения, точность, правильность, сходимость и воспроизводимость результатов измерений, предел и границы обнаружения.
Приведем определения основных характеристик измерений.
Принцип измерений — явление, закон или эффект, положенные в основу измерений. Например, применение эффекта Доплера для измерения скорости движения звезд, вращения небесных тел.
Метод измерений — прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы измерений классифицируются по различным признакам. Один из них — это физический принцип, лежащий в основе измерений. Например, проведение измерений с помощью ядерного магнитного резонанса (магнитные измерения), электронной спектроскопией (оптические измерения) и др. Наиболее распространенное деление методов измерений — это на методы непосредственной оценки и методы сравнения. Метод непосредственной оценки позволяет определить значение величины по показанию средства измерения, которое заранее проградуировано в единицах измеряемой величины или в единицах других величин, от которых она зависит. Метод сравнения предусматривает сопоставление измеряемой величины с величиной, воспроизводимой мерой. Особенностью этого метода является непосредственное участие мер в процессе измерения. Методы сравнения подразделяются на дифференциальный, нулевой, замещения и совпадений. Каждый метод измерений характеризуется определенной погрешностью измерений.
Погрешность измерений — отклонение результатов измерений от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму целого ряда составляющих, каждая из которых имеет свою причину.
Сходимость— близость друг к другу результатов измерений одной и той же величины, полученных по одной методике, выполненных одним и тем же средством измерений, одним и тем же оператором в одинаковых условиях, в одной и той же лаборатории.
Воспроизводимость — близость результатов измерений одной и той же величины, полученных по единой методике, выполненной в разных лабораториях, разными экземплярами средств измерений, разными операторами, в разное время. Воспроизводимость результатов измерений зависит также от однородности и стабильности характеристик испытуемого образца.
Точность — характеристика качества измерений, отражающая близость к нулю погрешности результатов измерений. Высокая точность измерений соответствует малым величинам погрешностей измерения.
В 2002 г . в России введены в действие национальные стандарты ГОСТ Р ИСО 5725-2002 часть 1-6 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений», которые являются прямым применением шести частей основополагающего международного стандарта ИСО 5725. Эти стандарты используются в практической деятельности при разработке, аттестации и применении методик выполнения измерений, стандартизации методик контроля (испытаний, измерений, анализа), испытаниях продукции, в том числе для целей подтверждения соответствия, оценки компетентности испытательных лабораторий согласно требованиям ГОСТ Р ИСО/МЭК 17025-2006. Стандарты ИСО 5725 могут применяться для оценки точности выполнения измерений различных величин, характеризующих измеряемые свойства того или иного объекта, в соответствии со стандартизованной процедурой. Следует отметить, что в отечественной метрологии точность и погрешность результатов измерений, как правило, определяются сравнением результатов измерений с истинным или действительным (условно истинным) значением измеряемой величины. Часто за действительное значение принимают общее среднее значение (математическое ожидание) установленной совокупности результатов измерений. В ИСО 5725 вместо термина «действительное значение» введен термин «принятое опорное значение», который и рекомендуется для использования в практике. Термины «правильность» и «прецизионность» в отечественных нормативных документах по метрологии до введения серии стандартов ГОСТ Р ИСО 5725 не использовались.
Дадим определение этих терминов.
Правильность характеризует степень близости среднего арифметического значения большого числа результатов измерений к истинному (действительному) или принятому опорному значению. Показателем правильности обычно является значение систематической погрешности.
Прецизионность — степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях. Мера прецизионности обычно вычисляется как стандартное отклонение результатов измерений. Крайние показатели прецизионности — повторяемость (сходимость) и воспроизводимость широко используются в отечественных нормативных документах, в том числе в большинстве национальных стандартов на методы контроля. Термин «точность» в соответствии с ГОСТ Р ИСО 5725-1—2002 определяется как степень близости результата измерений к применяемому опорному значению.
Внедрение стандартов ГОСТ Р ИСО 5725 направлено на более эффективную реализацию требований национальной системы стандартизации при разработке стандартов на методы контроля продукции различных отраслей промышленности.
Таким образом, при правильном выборе метода измерений, повышая такие показатели, как точность, правильность, уменьшая погрешности измерений, можно достигать высокого качества измерений.
Измерения выполняются с помощью специальных технических средств, имеющих нормированные метрологические характеристики, воспроизводящие и хранящие единицу измеряемой величины, размер которой принимается неизменным в пределах установленной погрешности в течение известного интервала времени, Такие технические средства являются средствами измерений. Данное определение раскрывает метрологическую сущность средства измерения, заключающуюся, во-первых, в «умении» хранить (или воспроизводить) единицу измеряемой величины и, во-вторых, в неизменности размера хранимой единицы. К средствам измерений относятся меры, компараторы, измерительные преобразователи и приборы, измерительные установки, системы и комплексы (рис. 8.3).
хранения величины одного или нескольких заданных размеров. К мерам, например, относятся гири, концевые меры длины, нормальные элементы. Меры, воспроизводящие измеряемую величину одного размера, называются однозначными. Меры, воспроизводящие измеряемую величину разных размеров, называются многозначными. Примером многозначной меры является миллиметровая линейка, воспроизводящая, наряду с миллиметровыми, также и сантиметровые размеры длины. Применяются также меры в виде наборов и магазинов мер.</p> <p>Часто к однозначным мерам относят стандартные образцы и стандартные вещества. Указанное на мере значение величины является номинальным значением меры. В специальном свидетельстве, придаваемом мере, указывается действительное значение, определенное при высокоточных измерениях с помощью соответствующего эталона. Разность между номинальным и действительным значениями называется погрешностью меры. Величина, обратная погрешности меры по знаку, представляет поправку к номинальному значению меры.</p> <div style=)
Читайте также: Каким способом лечат грыжу