Способы защиты схемы от короткого замыкания

Как устроена и работает защита от короткого замыкания

Термином «короткое замыкание» в электротехнике называют аварийный режим работы источников напряжения. Он возникает при нарушениях технологических процессов передачи электроэнергии, когда на действующем генераторе или химическом элементе выходные клеммы замыкаются накоротко (закорачиваются).

При этом вся мощность источника мгновенно прикладывается к закоротке. Через нее протекают огромные токи, способные сжечь оборудование и нанести электрические травмы близкорасположенным людям. Для прекращения развития подобных аварий используются специальные защиты.

Какие бывают виды коротких замыканий

Природные электрические аномалии

Они проявляются во время грозовых разрядов, сопровождающихся мощными молниями.

Источниками их образования являются высокие потенциалы статического электричества различных знаков и величин, накопленные облаками при их перемещении ветром на огромные расстояния. В результате естественного охлаждения при подъеме на высоту пары влаги внутри облака конденсируются, образуя дождь.

Влажная среда обладает низким электрическим сопротивлением, которое создает пробой воздушной изоляции для прохождения тока в виде молнии.

Электрический разряд проскакивает между двумя объектами, обладающими разными потенциалами:

  • на приближающихся облаках;
  • между грозовой тучей и землей.

Первый вид молнии опасен для летательных аппаратов, а разряд на землю способен разрушить деревья, здания, промышленные объекты, воздушные линии электропередач. Для защиты от него устанавливают молниеотводы, которые последовательно выполняют функции:

1. приема, притяжения потенциала молнии на специальный улавливатель;

2. пропускания полученного тока по тоководу к контуру заземления здания;

3. отвода высоковольтного разряда этим контуром на потенциал земли.

Короткие замыкания в цепях постоянного тока

Гальванические источники напряжения либо выпрямители создают на выходных контактах разность положительных и отрицательных потенциалов, которые в нормальных условиях обеспечивают работу схемы, например, свечение лампочки от батарейки, как показано на рисунке ниже.

Электрические процессы, происходящие при этом описывает математическое выражение закона Ома для полной цепи.

Электродвижущая сила источника распределяется на создание нагрузки во внутреннем и внешнем контурах за счет преодоления их сопротивлений «R» и «r».

В аварийном режиме между клеммами батарейки «+» и «-» возникает закоротка с очень низким электрическим сопротивлением, которая практически исключает протекание тока во внешней цепи, выводя эту часть схемы из работы. Поэтому по отношению к номинальному режиму можно считать, что R=0.

Весь ток циркулирует только во внутреннем контуре, обладающим маленьким сопротивлением, и определяется по формуле I=E/r .

Поскольку величина электродвижущей силы не изменилась, то значение тока очень резко возрастает. Такое короткое замыкание протекает по закорачиваемому проводнику и внутреннему контуру, вызывает внутри них огромное выделение тепла и последующее нарушение конструкции.

Короткие замыкания в цепях переменного тока

Все электрические процессы здесь тоже описываются действием закона Ома и происходят по аналогичному принципу. Особенности на их прохождение налагают:

применение схем однофазных или трехфазных сетей различной конфигурации;

наличие контура заземления.

Виды коротких замыканий в схемах переменного напряжения

Токи КЗ могут возникнуть между:

двумя разными фазами;

двумя разными фазами и землей;

тремя фазами и землей.

Для передачи электроэнергии по воздушным ЛЭП системы электроснабжения могут использовать разную схему подключения нейтрали:

В каждом из этих случаев токи коротких замыканий будут формировать свой путь и иметь разную величину. Поэтому все перечисленные варианты сборки электрической схемы и возможности возникновения в них токов коротких замыканий учитываются в создании конфигурации токовых защит для них.

Внутри потребителей электроэнергии, например, электродвигателя тоже может возникнуть короткое замыкание. У однофазных конструкций потенциал фазы может пробить слой изоляции на корпус или нулевой проводник. В трехфазном электрооборудовании дополнительно может возникнуть неисправность между двумя или тремя фазами либо между их сочетаниями с корпусом/землей.

Во всех этих случаях, как и при КЗ в цепях постоянного тока, через образовавшуюся закоротку и всю подключенную к ней до генератора схему будет протекать ток короткого замыкания очень большой величины, вызывающий аварийный режим.

Для его предотвращения используют защиты, которые осуществляют автоматическое снятие напряжение с оборудования, подвергшегося действию повышенных токов.

Как выбирают границы срабатывания защиты от короткого замыкания

Все электрические приборы рассчитаны на потребление определенной величины электроэнергии в своем классе напряжения. Рабочую нагрузку принято оценивать не мощностью, а током. Его проще замерять, контролировать и создавать на нем защиты.

Читайте также:  Психологические способы чтобы меньше есть

На картинке представлены графики токов, которые могут возникнуть в разных режимах работы оборудования. Под них подбираются параметры настройки и наладки защитных устройств.

На графике коричневым цветом показана синусоида номинального режима, который выбирается в качестве исходного при проектировании электрической схемы, учете мощности электропроводки, подборе токовых защитных устройств.

Частота промышленной синусоиды 50 герц при этом режиме всегда стабильна, а период одного полного колебания происходит за время 0,02 секунды.

Синусоида рабочего режима на картинке показана синим цветом. Она обычно меньше номинальной гармоники. Люди редко полностью используют все резервы отведенной им мощности. Как пример, если в комнате висит пятирожковая люстра, то для освещения часто включают одну группу лампочек: две или три, а не все пять.

Чтобы электроприборы надежно работали при номинальной нагрузке, создают небольшой запас по току для настройки защит. Величину тока, на который их настраивают для отключения, называют уставкой. При ее достижении выключатели снимают напряжение с оборудования.

В интервале амплитуд синусоид между номинальным режимом и уставкой электросхема работает в режиме небольшого перегруза.

Возможная временна́я характеристика аварийного тока показана на графике черным цветом. У нее амплитуда превышает уставку защит, а частота колебаний резко изменилась. Обычно она имеет апериодический характер. Каждая полуволна изменяется по величине и частоте.

Алгоритм работы токовых защит

Любая защита от короткого замыкания включает в себя три основных этапа работы:

1. постоянное отслеживание состояния синусоиды контролируемого тока и определение момента возникновения неисправности;

2. анализ создавшейся ситуации и выдача логической частью команды на исполнительный орган;

3. снятие напряжения с оборудования коммутационными аппаратами.

Во многих устройствах используется еще один элемент — ввод задержки времени на срабатывание. Его используют для обеспечения принципа селективности в сложных, разветвленных схемах.

Поскольку синусоида достигает своей амплитуды за время 0,005 сек, то этого периода, как минимум, необходимо для ее замера защитами. Следующие два этапа работы тоже не совершаются мгновенно.

Общее время работы самых быстрых токовых защит по эти причинам чуть меньше периода одного колебания гармоники 0,02 сек.

Конструктивные особенности защит от короткого замыкания

Электрический ток, проходя по любому проводнику, вызывает:

термический нагрев токопровода;

наведение магнитного поля.

Эти два действия приняты за основу конструирования защитных аппаратов.

Защиты на основе принципа термического воздействия тока

Тепловое действие тока, описанное учеными Джоулем и Ленцем, используется для защиты предохранителями.

Она основана на установке внутри пути тока плавкой вставки, которая оптимально выдерживает номинальную нагрузку, но перегорает при ее превышении, разрывая цепь.

Чем выше величина аварийного тока, тем быстрее создается разрыв схемы — снятие напряжения. При небольшом превышении тока отключение может произойти через длительный промежуток времени.

Предохранители успешно работают в электронных устройствах, электрооборудовании автомобилей, бытовой техники, промышленных устройствах до 1000 вольт. Отдельные их модели эксплуатируются в цепях высоковольтного оборудования.

Защиты на основе принципа электромагнитного воздействия тока

Принцип наведения магнитного поля вокруг проводника с током позволил создать огромный класс электромагнитных реле и защитных автоматов, использующих катушку отключения.

Ее обмотка расположена на сердечнике — магнитопроводе, в котором складываются магнитные потоки от каждого витка. Подвижный контакт механически связан с якорем, являющимся качающейся частью сердечника. Он прижимается к стационарно закрепленному контакту усилием пружины.

Ток номинальной величины, проходящий по виткам катушки отключения, создает магнитный поток, который не может преодолеть усилие пружины. Поэтому контакты постоянно находятся в замкнутом состоянии.

При возникновении аварийных токов якорь притягивается к стационарной части магнитопровода и разрывает цепь, созданную контактами.

Один из видов автоматических выключателей, работающих на основе электромагнитного снятия напряжения с защищаемой схемы, показан на картинке.

В нем используется:

автоматическое отключение аварийных режимов;

система гашения электрической дуги;

ручное или автоматическое включение в работу.

Цифровые защиты от короткого замыкания

Все рассмотренные выше защиты работают с аналоговыми величинами. Кроме них в последнее время в промышленности и особенно в энергетике начинают активно внедряются цифровые технологии на основе работы микропроцессорных устройств и статических реле. Такие же приборы с упрощенными функциями выпускаются для бытовых целей.

Замер величины и направления тока, проходящего по защищаемой схеме, выполняет встроенный понижающий трансформатор тока высокого класса точности. Замеренный им сигнал подвергается оцифровке посредством наложения высокочастотных прямоугольных импульсов по принципу амплитудной модуляции.

Затем он поступает на логическую часть микропроцессорной защиты, которая работает по определенному, заранее настроенному алгоритму. При возникновении аварийных ситуаций логика устройства выдает команду исполнительному отключающему механизму на снятие напряжения с сети.

Читайте также:  Сущность трастового способа управления портфелем ценных бумаг

Для работы защиты используется блок питания, берущий напряжение от сети или автономных источников.

Цифровые защиты от коротких замыканий обладают большим количеством функций, настроек и возможностей вплоть до регистрации предаварийного состояния сети и режима ее отключения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Схемы защиты от короткого замыкания и перегрузок в блоке питания

Короткое замыкание (и перегрузка, как частный случай), являются самой опасной аварийной ситуацией при эксплуатации блока питания. И дело не только в повышенной вероятности выхода из строя элементов силовой цепи БП. Термическое действие многократно выросшего тока может привести к возгоранию изоляции проводников и дальнейшему развитию пожара.

У мощных БП также могут возникнуть значительные динамические усилия в токоведущих элементах, исходом которых будет смещение проводников и их механическое повреждение. Поэтому защита от КЗ для источников питания – не роскошь, а насущная необходимость.

Принцип работы защиты от короткого замыкания

Большинство схем представляют собой отдельный узел, который можно применить в любом устройству (с поправкой на номинальный ток). Его можно встроить в уже имеющийся блок питания или собрать в отдельном корпусе.

Короткое замыкание сопровождается двумя явлениями:

  • увеличение тока;
  • снижение напряжения (чем ближе к месту КЗ, тем больше снижение, а в месте короткого замыкания оно равно нулю).

Большинство устройств защиты используют первый признак. Датчиком тока обычно служит резистор с номиналом от нескольких сотых до единиц Ом. Проходящий ток создает пропорциональное падение напряжение на шунте – чем больше ток, тем больше напряжение. Схема сравнения сравнивает это напряжение с заданным уровнем, и, при достижении порога, дает сигнал на размыкание ключевого элемента, ток прерывается. Узел индикации подает световой или звуковой сигнал о срабатывании защиты. Недостаток такого решения – КЗ может произойти до места установки измерительного шунта, и тогда защита не сработает.

В импульсных блоках питания с ШИМ-регулированием защита может быть построена несколько по-другому.

Ток измеряется непосредственно в цепи импульсного трансформатора. Напряжение так же сравнивается с заданным значением, при превышении происходит воздействие на ШИМ-регулятор. Генерация либо прекращается полностью, либо напряжение снижается до безопасного уровня. Минусом является ограниченная область (только БП с PWR-регулированием) и привязка к конкретной схемотехнике БП. Зато сверхток контролируется на всех участках силовой цепи.

Примеры схем и их описание

Схемы защиты блока питания от замыкания на выходе или перегрузки строятся на разной элементной базе. Их можно разделить по типу применяемого в качестве ключа элемента.

На биполярном транзисторе

Несложную защиту от КЗ можно собрать на биполярном транзисторе. В качестве измерительного шунта применено сопротивление на 0,5 Ом.

В исходном положении транзистор T1 открыт (через резистор R1). Транзистор T2 закрыт. При увеличении тока через шунт и достижения на нем напряжения, достаточного для открывания транзистора T2, на базе T1 напряжение падает почти до нуля, он закрывается, прерывая ток. При этом загорается светодиод, сигнализируя о КЗ. При уменьшении тока ниже предела, схема возвращается в исходное положение.

При напряжении БП выше 25 и ниже 8 вольт, возможно, придется подобрать резистор R1 так, чтобы ключевой транзистор был надежно открыт. Резистор R3 можно применить готовый керамический или сделать из нихрома.

Ток срабатывания устанавливается подбором сопротивления шунта – чем оно выше, тем при меньшем токе сработает защита. Также на ток срабатывания влияет сопротивление резистора R2 и коэффициент усиления транзистора T2, в качестве которого может быть применен любой маломощный прибор структуры n-p-n. Рабочий ток ограничен наибольшим током коллектора ключа, в качестве которого может быть применен мощный транзистор n-p-n.

Тип транзистора Максимальный ток коллектора, А
КТ819 10
КТ729А(Б) 30(20)
2N5490 7
2N6129 7
2N6288 7
BD291 6
BD709 6

Врожденный недостаток подобного схемотехнического решения – через ключ течет полный ток нагрузки (и ток КЗ до момента закрывания транзистора). Поэтому ключевой элемент надо устанавливать на радиатор соответствующих размеров.

На полевом транзисторе

Этот недостаток можно несколько сгладить применением в качестве ключа полевого транзистора. Его сопротивление в открытом состоянии заметно ниже, значит, и рассеиваемая на нем мощность также меньше. Да и ток нагрузки ограничивается в меньшей степени.

Читайте также:  Как определить способ определения поставщика по 44 фз это

Здесь ключ находится в отрицательной шине выходного напряжения. В исходном положении полевой транзистор открыт напряжением, поступающим через светодиод. Ток в этой цепи очень мал, светодиод не светится. Транзистор Т2 закрыт. При увеличении тока потребления напряжение на шунте R1 начинает расти, когда оно увеличится до уровня открывания Т2, ключ T1 закроется, а ток через светодиод увеличится, индицируя об активации защиты. Уровень срабатывания регулируется выбором сопротивления шунта.

Ток защиты можно настраивать и изменением сопротивления R4. Если вместо него установить потенциометр, можно сделать регулируемую защиту по току. Использовать в качестве R1 переменный или подстроечный элемент нельзя.

Транзистор T2 любой маломощный. Т1 должен быть рассчитан на полный ток нагрузки. Можно применить транзисторы из таблицы или другие подходящие по току и напряжению.

Тип транзистора Максимальный ток стока, А
IRFZ40 50
IRFZ44 41-55 (в зависимости от исполнения)
IRFZ46 46-55 (в зависимости от исполнения)
IRFZ48 61-72 (в зависимости от исполнения)

Если рабочий ток превышает 8..10 ампер, ключ надо установить на радиатор.

На тиристоре

Если нет мощного транзистора, защиту можно собрать и на тиристоре. Особенности данной схемы:

  • используется второй признак короткого замыкания – снижение напряжения;
  • защита работает в цепи выпрямленного (пульсирующего) напряжения (без сглаживающих конденсаторов).

Вторая особенность обусловлена тем, что тиристор выключается во время очередного снижения напряжения до нуля в конце полупериода. При постоянном напряжении он не закроется, пока не будет отключена нагрузка (или не выключится блок питания). Поэтому сфера применения этой схемы ограничена трансформаторными зарядными устройствами (аккумуляторам сглаживание напряжения не нужно).

Во время работы схемы, в начале каждого полупериода напряжение на делителе P1R4 возрастает, транзистор Т1 открывается, подавая напряжение на управляющий электрод тиристора. VS1 тоже открывается, пропуская полуволну синусоиды в нагрузку. Когда напряжение спадает, транзистор закрывается. Закрывается и тиристор, ведь в момент перехода через ноль ток через него падает до уровня, меньшего тока удержания. В новом полупериоде все повторяется снова. Если в результате КЗ напряжение на выходе снизится, транзистор не сможет открыться, не откроется и тиристор. Когда ток упадет номинального уровня, напряжение на выходе восстановится, и тиристор вновь откроется. Ток (точнее, напряжение) срабатывания устанавливается потенциометром Р1.

К недостаткам схемы можно отнести низкое быстродействие – если замыкание произойдет в начале полупериода, до отключения придется ждать его окончания – это 0,01 секунды (плюс время срабатывания тиристора), что достаточно много. Другая проблема – если замыкание произойдет в электрически удаленной точке и мощность источника будет высокой, необходимого снижения напряжения может и не произойти. Кроме того, снижение напряжения может произойти и не по причине сверхтока, и произойдет ложное срабатывание.

На реле

Несложную защиту моно выполнить на одном электромагнитном реле. Ее особенность в том, что реле является измерительным органом, пороговой схемой и ключевым элементом одновременно.

В исходном положении контакты реле находятся в положении, указанном на схеме. Положительная шина разомкнута, напряжения на выходе нет. При нажатии на кнопку S1 реле срабатывает, перекидной контакт переключается и обмотка реле самоблокируется во включенном положении. Загорится зеленый светодиод.

При возникновении короткого замыкания или перегрузки, достаточной для просадки выходного напряжения, напряжение снизится до уровня ниже напряжения удержания реле (оно всегда ниже напряжения срабатывания), реле отпустит, напряжение на потребителе исчезнет, зеленый светодиод погаснет, а красный загорится. Схема вернется в исходное положение, а для подачи напряжения на выход потребуется вновь нажать кнопку.

Кроме недостатков, характерных для всех схем, отслеживающих падение напряжение в результате сверхтока, данное решение имеет свои минусы. Ток срабатывания невозможно настроить — только подбором реле. Для выбора надо иметь запас элементов. Второе – точность настройки уровня отключения будет низкой. Ток срабатывания зависит от состояния механической части реле – упругости пружины, трения в поворотном механизме якоря и т.п. А оно может меняться при воздействии окружающей среды или просто со временем. Также следует учитывать механический износ и подгорание контактов реле при многократных срабатываниях.

Для наглядности рекомендуем серию тематических видеороликов.

Приведенные схемы не являются исчерпывающими. В литературе и интернете можно найти и другие узлы, но рассмотренные принципы построения являются базовыми, и понимание их работы позволит разобраться и в работе других, более сложных схем.

Источник

Оцените статью
Разные способы