- Защита от ионизирующего излучения
- Мероприятия по защите от ионизирующих излучений
- Ионизирующее излучение, последствия для здоровья и защитные меры
- Основные факты
- Что такое ионизирующее излучение?
- Источники излучения
- Воздействие ионизирующего излучения
- Последствия ионизирующего излучения для здоровья
- Деятельность ВОЗ
- Принципы, методы и средства защиты от ионизирующих излучений
- Средства индивидуальной защиты
- Защитное экранирование
Защита от ионизирующего излучения
Ионизирующее излучение – это любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Представляет собой поток заряженных и (или) незаряженных частиц. Различают:
- непосредственно ионизирующее излучение;
- косвенно ионизирующее излучение.
Непосредственно ионизирующее излучение состоит из заряженных частиц, кинетическая энергия которых достаточная для ионизации при столкновении с атомами вещества (α и ß – излучение радионуклидов, протонное излучение ускорителей и пр.).
Косвенно ионизирующее излучение состоит из незаряженных (нейтральных) частиц, взаимодействие которых со средой приводит к возникновению заряженных частиц, способных непосредственно вызывать ионизацию (нейтронное излучение, гамма-излучение).
Ядра всех изотопов химических элементов образуют группу нуклидов, большинство которых нестабильные, т.е. они все время превращаются в другие нуклиды. Самопроизвольный распад нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид – радионуклидом. При каждом распаде высвобождается энергия, которая и передается дальше в виде излучения. Образование и рассеивание радионуклидов приводит к радиоактивному заражению воздуха, почвы, воды, что требует постоянного контроля их содержания и принятия мер по нейтрализации.
Источниками ионизирующих излучений являются радиоактивные элементы и их изотопы, ядерные реакторы, ускорители заряженных частиц, рентгеновские установки, высоковольтные источники постоянного тока и др.
Существенную часть облучения население получает от естественных источников радиации, т.е. из космоса и от радиоактивных веществ, находящихся в земной коре. Например, радиоактивный газ радон постоянно выделяется на поверхность и проникает в производственные и жилые помещения.
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные частицы попадают внутрь организма с пищей, через органы дыхания).
Основной механизм действия на организм человека ионизирующих излучений связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках, что ведет к их разрушению.
Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия, вида излучения и радионуклида, попавшего внутрь организма.
Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в греях (1 Гр – 1 Дж/кг). Однако этот критерий не учитывает того, что при одинаковой поглощенной дозе α-частицы гораздо опаснее ß-частиц и гамма-излучения.
В связи с этим введена величина эквивалентной дозы, которая измеряется в зивертах (1 Зв = 1 Дж/кг) по Международной системе единиц (СИ), принятой в I960 г. Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиационную опасность для организма разных видов ионизирующего излучения.
Для оценки эквивалентной дозы применяется также единица бэр (биологический эквивалент рада): 1 бэр = 0,01 Зв. В зивертах также измеряется эффективная эквивалентная доза – эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению.
В соответствии с требованиями Закона о радиационной безопасности населения введены дозовые пределы:
- для персонала 20 мЗв (миллизивертов) в год при производственной деятельности с источниками ионизирующих излучений;
- для населения – 1 мЗв.
Мероприятия по защите от ионизирующих излучений
Защита от ионизирующих излучений осуществляется с помощью следующих мероприятий:
- сокращение продолжительности работы в зоне излучения;
- полная автоматизация технологического процесса;
- дистанционное управление;
- экранирование источника излучения;
- увеличение расстояния;
- использование манипуляторов и роботов;
- использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;
- постоянный контроль за уровнем ионизирующего излучения и за дозами облучения персонала.
Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными веществами и предотвращении попадания их в воздух рабочей зоны.
Для защиты людей от ионизирующих излучений следует строго соблюдать требования СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности. Санитарные правила и нормативы» и СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)».
Источник
Ионизирующее излучение, последствия для здоровья и защитные меры
Основные факты
- Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн или частиц.
- Люди подвергаются воздействию природных источников ионизирующего излучения, таких как почва, вода, растения, и воздействию искусственных источников, таких как рентгеновское излучение и медицинские устройства.
- Ионизирующее излучение имеет многочисленные полезные виды применения, в том числе в медицине, промышленности, сельском хозяйстве и в научных исследованиях.
- По мере расширения использования ионизирующего излучения увеличивается и потенциал опасностей для здоровья, если оно используется или ограничивается ненадлежащим образом.
- Острое воздействие на здоровье, такое как ожог кожи или острый лучевой синдром, может возникнуть, когда доза облучения превышает определенные уровни.
- Низкие дозы ионизирующего излучения могут увеличить риск более долгосрочных последствий, таких как рак.
Что такое ионизирующее излучение?
Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.
Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.
Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).
Источники излучения
Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.
Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения. Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.
На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.
Воздействие ионизирующего излучения
Воздействие излучения может быть внутренним или внешним и может происходить различными путями.
Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.
Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.
Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.
Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).
Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.
Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.
Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.
Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.
На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население. Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.
Последствия ионизирующего излучения для здоровья
Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).
Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.
Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.
Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).
Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.
Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).
Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.
Деятельность ВОЗ
ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.
В соответствии с основной функцией, касающейся «установления норм и стандартов, содействия в их соблюдении и соответствующего контроля» ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.
Источник
Принципы, методы и средства защиты от ионизирующих излучений
Защита от ионизирующих излучений включает в себя:
организационные мероприятия (выполнение требований безопасности при размещении предприятий, устройстве рабочих помещений и организации рабочих мест, при работе с закрытыми и открытыми источниками, при транспортировке, хранении и захоронении радиоактивных веществ, проведение общего и индивидуального дозиметрического контроля);
медико-профилактические мероприятия (сокращенный рабочий день, дополнительный отпуск, медицинские осмотры, лечебно-профилактическое питание и др.);
инженерно-технические методы и средства (защита расстоянием и временем, применение средств индивидуальной защиты, защитное экранирование и др.).
Средства индивидуальной защиты
Средства индивидуальной защиты предназначеныдля защиты от попадания радиоактивных загрязнений на кожу тела работающих и внутрь организма, а также от альфа- и бета-излучений.
Для защиты всего телаприменяется спецодежда в виде халатов, шапочек, резиновых перчаток и др. При работах с изотопами большой активности (>10 мКи) применяются комбинезоны, спецбелье, пленочные хлорвиниловые фартуки и нарукавники, клееночные халаты, тапочки или ботинки, для защиты рук — перчатки из просвинцованной резины, а защиты ног — специальная пластиковая обувь.
Для защиты глазприменяются очки, стекло которых может быть обычным (при альфа- и мягких бета-излучениях), силикатным или органическим (при бета-излучениях высоких энергий), свинцовое или с фосфатом вольфрама (при гамма-излучениях), с боросиликатом кадмия или фтористыми соединениями (при нейтронном облучении) и др.
При содержании радиоактивных веществ в паро-, газо- или пылевидном состоянии для защиты от них применяются очки закрытого типа с резиновой полумаской.
Для защиты органов дыханияприменяются респираторы или шланговые приборы (противогазы), пневмокостюмы и пнев-мошлемы.
Для предотвращения или частичного ослабления воздействия радионуклидов, попавших в организм, а также для предупреждения отложения их в организме и ускорения выведения рекомендуются такие меры как промывание желудка и кишечника, использование адсорбентов, веществ для замещения радионуклидов или комплексообразования с последующим ускоренным их выведением из организма (сернокислый барий, глюканат кальция, хлористый кальций, хлористый аммоний, пентацин, йодная настойка или йодистый калий и др.).
Защитное экранирование
При проектировании и расчете защитных экранов определяют их материал и толщину, которые зависят от вида излучения, энергии частиц и квантов и необходимой кратности ослабления.
Расчет защитных экранов основываетсяна особенностях и закономерностях взаимодействия различных видов излучения с веществом.
Для защиты от альфа-частицнеобходимо, чтобы толщина экрана превышала длину пробега альфа-частиц в данном материале экрана. Для защиты от внешнего облучения альфа-частицами обычно применяют тонкую металлическую фольгу (20-100 мкм), силикатное стекло, плексиглас или несколько сантиметров воздушного зазора.
Для защиты от бета-излученийприменяют экраны из материалов с малым атомным весом (алюминий, оргстекло, полистирол и др.), т.к. при прохождении бета-излучений через вещество, возникает вторичное излучение, энергия которого увеличивается с ростом атомного номера вещества.
При высоких энергиях бета-частиц (>3 МэВ), применяют двухслойные экраны, наружный слой которых выполняется из алюминия. Внутренняя облицовка экрана изготавливается из материалов с малым атомным номером, чтобы уменьшить первоначальную энергию электронов.
Толщина слоя различных материалов для поглощения бета-излучения определяется также максимальным пробегом бета-частиц.
При проектировании защитного экранирования от нейтроноввыбирают вещества с малым атомным номером (вода, полиэтилен, парафин, органические пластмассы и др.), т.к. при каждом столкновении с ядром нейтрон теряет тем большую часть своей энергии, чем ближе масса ядра к массе нейтрона.
При защите от нейтронного излучения необходимо учитывать, что процесс поглощения эффективен для тепловых, медленных и резонансных нейтронов, поэтому быстрые нейтроны должны быть предварительно замедлены. Средняя потеря энергии при упругом рассеянии максимальна на легких ядрах (например, водороде) и минимальна на тяжелых. Вероятность потери энергии при неупругом рассеянии возрастает на тяжелых ядрах и с увеличением энергии нейтрона. Тепловые нейтроны диффундируют через защиту до тех пор, пока не будут захвачены или не выйдут за ее пределы, поэтому важно обеспечить быстрое поглощение тепловых нейтронов выбором наиболее эффективных поглотителей. После захвата тепловых нейтронов почти всегда возникает гамма-излучение, которое необходимо ослабить. Таким образом,защита от нейтронов должна иметь в своем составеводород или другое легкое вещество для замедления быстрых и промежуточных нейтронов при упругом рассеянии, тяжелые элементы с большой атомной массой для замедления быстрых нейтронов в процессе неупругого рассеяния и ослабления от захватного гамма-излучения, элементы с высоким эффективным сечением поглощения тепловых нейтронов.
Для защиты от гамма-лучейприменяются экраны из металлов высокой плотности (свинец, висмут, вольфрам), средней плотности (нержавеющая сталь, чугун, медные сплавы) и некоторые строительные материалы (бетон, баритобетон и др.).
В практике расчета защиты от гамма-излучения широко применяются универсальные таблицы,позволяющие определить толщину защитыпо заданному уменьшению мощности дозы, а при известной толщине защиты легконайти кратность ослабления излученияи определить допустимое время работы за защитой или допустимое значение активности источника.По этим таблицам определяют такжедополнительную защиту к уже существующей, требуемый набор толщины слоев различных материалов, линейные или массовые эквиваленты отдельных защитных материалов, слои полуослабления в различных интервалах толщины материала и т.п. Однако указанные таблицы пригодны только для моноэнергетических источников гамма-излучения. В тех случаях, когда источник имеет сложный спектр излучения, расчет толщины защиты, обеспечивающий необходимую кратность ослабления, ведут методом «конкурирующих» линий.
При защите от рентгеновского излучениятолщина защитного экрана определяется необходимой степенью ослабления мощности дозы излучения.
Для экранирования от рентгеновского излучения используютсятакие материалы как свинец, бетон, свинцовое стекло и др.
В отдельных случаях, когда по характеру выполняемых работ использование стационарной защиты затруднено, допускается обеспечение защиты путем использования переносных защитных ширм, экранов, а также средств индивидуальной защиты (защитные фартуки, рукавицы, щитки и пр.)
Защита высоковольтных электронных приборов или всей установки, генерирующих мягкое рентгеновское излучение, достигается помещением этих приборов в металлические кожухи, шкафы или блоки.
Источник