- Эффективные методы защиты газопровода от коррозии
- Причины
- Общая информация
- Катодная защита газопроводов от коррозии
- Противодействие протекторным способом
- Дренирование
- Особенности дренажа
- Коррозия подземных трубопроводов
- Защита подземных газопроводов от коррозии
- Эффективность
- Принцип катодной поляризации
- Внешние источники
- Защита подземных газопроводов от коррозии
Эффективные методы защиты газопровода от коррозии
Защита газопроводов от коррозии проводится несколькими способами. Это связано с разной природой происхождения самой деформации, которая зависит от типа расположения магистрали и окружающих условий. Под коррозией металло-проводов подразумевают самопроизвольную деформацию указанных элементов из-за химических либо электрохимических процессов. Основные виды деформаций – жидкостная, атмосферная, подземная.
Причины
Ниже приведены краткие определения повреждений, которые нивелируются защитой газопроводов от коррозии:
- Химическое воздействие – самопроизвольное окисление металлических частей, обусловленное его трансформацией в устойчивую ионную область, под влиянием токонепроводящих составов.
- Электрохимическая коррозия – металл разрушается со скоростью, зависящей от электродных внедрений. Это связано с тем, что атомы ионизируются разрозненно, с обновлением окислителя в электролите.
- Самая опасная коррозия – атака токами блуждающего типа. Указанная проблема наблюдается вблизи электропроводящих систем, например в районе железнодорожных путей с контактной сетью.
Общая информация
К главным видам защиты газопроводов от коррозии относится три типа: протекторный, катодный и дренажный способы. Для того чтобы максимально обезопасить обслуживаемые объекты, применяют комплексные меры, включающие в себя катодную, протекторную, дренажную защиту. Катодные станции возводят с несколькими отсеками дренирования и разбросанными анодами во избежание экранирующего воздействия коммуникаций подземного расположения.
Катодная защита газопроводов от коррозии
Данный метод состоит в том, чтобы соединить позитивный полюс генератора постоянного тока с проводником анода-заземлителя. Из него токи попадают в почву, поступая через поврежденные участки изоляции в трубопровод. По трубе они направляются к месту подсоединения проводника, далее – к отрицательному рубежу источника.
Если имеется достаточный уровень напряжения, вся рабочая часть газопровода становится отрицательно-катодной. Это дает возможность предупредить образование активной коррозии. При этом анодным участком становится заземление (бросовый металл). В результате труба по отношению к грунту потенцируется отрицательно.
Противодействие протекторным способом
Протекторная защита газопровода от коррозии предусматривает создание блокирующего потенциала при помощи подсоединения к трубам металлических протекторов с более отрицательным показателем, чем параметр самого трубопровода. При использовании указанного метода не предусматривается внешний источник тока, требуемые характеристики создаются посредством гальванического анодного элемента. Под воздействием протектора на газопровод действует катодная поляризация, что способствует прекращению коррозийных процессов.
Рабочим материалом может выступать цинк, алюминий, магний в виде специальных сплавов (МЛ, ЦО, Ц1 и тому подобных). Указанный вид защиты максимально прост, не нуждается в дополнительном обслуживании. Данный способ в комбинации с другими методами актуально применять для защиты отдельных отсеков, не пересекаемых смежными участками катодной безопасности. Протекторная защита газопровода от коррозии уместна для специальных кожухов на переходах через ж/д пути и автодороги, на объектах с развитыми подземными сооружениями.
Протекторы монтируются сплотками по несколько элементов, подключаются непосредственно к трубе либо выходу-катоду. Между собой они соединяются при помощи специального кабеля, провода из стали или меди. Для увеличения эффективности защиты протекторы располагаются в заполнителе, что снижает переходное сопротивление. В качестве состава выступает сернокислый магний либо натрий с глиной. Расстояние монтажа протекторов от трубопровода составляет порядка 3-6 метров.
Дренирование
Очень часто трамвайные и железнодорожные рельсы на электрифицированных путях не имеют должной проводимости, что обуславливает попадание части электротока в грунт. Именно от этого необходимо защищать трубопроводы, идущие вблизи железных дорог. На точке вхождения блуждающих токов в трубу образуется катодный потенциал, а на выходе – анодная зона. Именно в последних местах происходит активное поражение металла.
Дренажная защита стальных газопроводов от коррозии является эффективным способом борьбы с токами блуждающего типа. Это очень важно, поскольку под воздействием указанного эффекта трубы деформируются насквозь за очень короткий период. Указанный вид защиты предполагает отвод токов от трубопровода к первичному источнику при помощи проводника. При этом уменьшается потенциал труб по отношению к земле, что способствует устранению знакопеременных и анодных участков с одновременной приостановкой утечек токов в почву.
Особенности дренажа
Размещение электродренажных линий зависит от расположения объекта потенциальной угрозы. Защита магистрального газопровода от коррозии возводится на минусовую шину тяговой подстанции либо на железнодорожные рельсы. В первом случае подключение может быть прямого или поляризованного действия.
Прямое дренирование уместно, если потенциал трубопровода выше аналогичного параметра системы отвода блуждающих токов. При обустройстве электродренажа на рельсах, подключение должно быть исключительно поляризованным. Он отличается от прямого варианта тем, что в схеме предусмотрены специальные установки, позволяющие предотвратить возврат электротоков на трубы. Линия дренажа бывает в кабельном или атмосферном исполнении, на ней монтируются контрольно-измерительные приборы.
Коррозия подземных трубопроводов
Указанный тип повреждения труб относится к одному из основных факторов их разрушения по причине образования трещин и разрывов. Коррозия в результате реакции металла с окружающей средой вызывает изменения в его структуре, что приводит к соответствующим деформациям. Предупредить подобные неисправности позволяет электрохимическая защита газопровода от коррозии, поскольку большинство реакций вызваны аналогичным способом. То есть на разных участках трубы образуются катодные и анодные зоны.
Под воздействием электродвижущего потока гальванической пары, электроны по металлическим элементам попадают в катодный отсек, перетекая в грунт и создавая реакцию с окисляющим электролитом, провоцируя образование кислородных и водородных ионов. Электролитический баланс нарушается, на анодном участке положительные частицы железа уходят в почву, что вызывает гальваническое поражение по причине потери массы металла.
Защита подземных газопроводов от коррозии
В этом направлении существует два способа защиты: активная и пассивная. Во втором случае предполагается создание герметичного барьера между металлом трубы и окружающей его почвой. Для этого используют различные покрытия типа полимерных лент, битума, смол.
Все изоляционные покрытия пассивной защиты газопроводов от коррозии должны соответствовать определенным стандартам и требованиям. Среди них:
- устойчивость к химическому воздействию;
- высокое электрическое сопротивление;
- приемлемый показатель адгезии к металлической поверхности;
- обладание высокой механической прочностью;
- неподверженность климатическим факторам;
- сохранение своих свойств при воздействии высоких и низких температур;
- отсутствие механических и заводских дефектов;
- в составе не должно быть компонентов, оказывающих коррозийное действие на металл;
- сопротивление атаке различного рода бактерий.
Эффективность
Как показывает практика, достичь оптимального сплошного слоя посредством нанесения изоляционного покрытия практически невозможно. Различные виды материалов обладают неодинаковой диффузной проницаемостью, что обуславливает разное качество обработки трубопроводов от окружающей среды. Кроме того, в процессе строительства и укладки на покрытии образуются вмятины, трещины и прочие дефекты. Сквозные повреждения пассивной защиты – наиболее опасны, так как в этих местах активно идет процесс грунтовой коррозии.
Поскольку указанный метод малоэффективен для полной безопасности труб, дополнительно используется активная защита газопровода от коррозии. Она основана на управлении электрохимическими процессами, имеющими место на рубеже трубного металла и грунтового электролита. Подобный подход называется комплексной защитой. В активной фазе предусмотрена катодная поляризация, способствующая уменьшению скорости растворения металла по мере подвижки потенциала коррозии к отрицательному показателю, в большую сторону от естественного параметра.
Принцип катодной поляризации
Катодная защита подземных трубопроводов осуществляется при помощи жертвенных анодов либо через поляризацию от источника постоянного тока. В первом случае расчет берется на то, что разные металлы в электролите обладают различными потенциалами. Следовательно, при создании гальванической пары из двух материалов и погружения их в электролит металл, потенциал которого обладает большим отрицательным показателем, будет анодом. Вследствие этого противоположный материал подвергается меньшему разрушению.
В практическом плане жертвенные гальванические элементы состоят из магниевых, алюминиевых или цинковых протекторов. Подобная защита эффективна в грунтах с низкой омностью (до 50 Ом·м).
Внешние источники
Катодная защита газопроводов от коррозийных процессов при помощи внешних источников – более сложная. Несмотря на трудоемкость организации процесса, подобная система не зависит от удельного почвенного сопротивления и обладает безграничным энергетическим ресурсом. Роль источников постоянного тока играют преобразователи различной конфигурации и конструкции, которые питаются от переменной электрической сети.
Преобразующие элементы дают возможность корректировать ток защитного направления в широких диапазонах. При этом гарантируется охрана газопровода, независимо от окружающих условий. Основные источники питания:
- воздушные ЛЭП 0,4/6,0/10,0 кВт;
- дизельные генераторы;
- термические, газовые и прочие аналоги.
Защитные токовые потоки, воздействующие на трубы, создают разность потенциалов от металла к грунту и распределяются неравномерно по длине газопровода.
Источник
Защита подземных газопроводов от коррозии
Н. Ф. Гуриненко, гл. инженер Управления по защите газовых сетей от коррозии ГУП «Мосгаз»
Вопросы защиты металлических коммуникаций от коррозии возникли одновременно с началом их внедрения. Уже в средние века кованые железные и литые чугунные трубы покрывали расплавленным пеком или древесным дегтем. В середине XIX века начали применять оцинкованные трубы. Для защиты водопроводных сетей в 1837 г. во Франции и в 1843 г. в США применяли обмазку из цементного раствора, данная технология используется и в наше время.
С появлением электрифицированного транспорта, телефонной канализации с кабелями в свинцовой оболочке, увеличением протяженности коммуникаций, выполненных из стальных труб, резко увеличилось количество коррозионных повреждений за счет воздействия блуждающих токов.
В 1892 г. были впервые высказаны предупреждения об опасности разрушения газовых труб, проложенных в агрессивных грунтах и под влиянием блуждающих токов.
Первая установка катодной защиты для газопровода и водопровода, проложенных вдоль трамвайной линии, была сооружена в 1906 г. в Германии. В качестве источника постоянного тока использовался генератор.
В нашей стране активная защита была внедрена в начале 1930-х годов на кабелях связи. Количество повреждений в 1933-1935 гг. составляло в среднем 1 350 повреждений оболочек кабеля в год. После устройства электрозащиты количество повреждений резко снизилось и в 40-х годах сократилось до 20-15 повреждений.
Коррозионных повреждений газопроводов, вызываемых блуждающими токами, в довоенные годы в Москве почти не наблюдалось. Это объясняется тем, что основная масса газопроводов состояла из чугунных труб.
Соотношение чугунных и стальных труб по годам выражалось в следующих цифрах:
Таблица | ||||||||||||||||||||||||
|
Как видно из приведенных цифр, до 1950 г. преобладали чугунные газопроводы, однако надо отметить, что с 1940 г. в Москве прокладывались только стальные газопроводы.
Чугунные газопроводы с раструбными соединениями имеют несравненно большее продольное сопротивление, чем сварные стальные газопроводы, и по существу представляют собой секционированное сооружение, поэтому при расположении в поле блуждающих токов чугунные раструбные газопроводы с точки зрения коррозионной устойчивости гораздо долговечнее стальных.
Надо также принять во внимание, что чугунные трубы, будучи неизолированными, имеют большую поверхность касания с землей, в то время как стальные касаются земли лишь в местах нарушения изоляции.
При этом стенки у чугунных труб значительно толще, и вследствие этого сквозные повреждения появляются значительно медленнее.
К началу 1950 г. в Москве протяженность трамвайных путей составляла 530 км. В 1954 г. была закончена электрификация всех железнодорожных направлений Московского узла, начатая в 1929 г. Резко возросло опасное влияние на подземные металлические сооружения блуждающих токов. Доля стальных газопроводов в 1952 г. составляла 78% от общей протяженности.
Стал наблюдаться значительный рост коррозионных повреждений газопроводов. Учитывая сложившуюся ситуацию, Исполком Моссовета в своем решении (от 3.08.1953 г. за № 52/6) отметил участившиеся случаи повреждений металлических подземных сооружений от действия блуждающих токов электрифицированного транспорта и связанный с этими повреждениями ущерб, наносимый населению и городскому хозяйству, и обязал московские организации, эксплуатирующие подземные сооружения, в том числе и Управление газового хозяйства, организовать группы по контролю и защите от коррозии подземных металлических коммуникаций. Этим же решением всем проектным организациям предложили включать в проекты прокладки металлических подземных сооружений мероприятия по защите сооружений от почвенной коррозии и блуждающих токов.
Одновременно на ОПС была возложена координация межведомственных вопросов, связанных с контролем и охраной подземных металлических сооружений Москвы от действия блуждающих токов и почвенной коррозии. К сожалению, с 1992 г. ОПС практически прекратил эту координацию.
В сентябре 1954 г. при лаборатории треста «Мосгаз» была организована группа защиты газопроводов от коррозии.
С первых же дней своего существования группа защиты приступила к систематическим электроизмерениям блуждающих токов на газопроводах, инструментальной проверке качества изоляционного покрытия вновь строящихся газопроводов, а также к периодической проверке состояния изоляции труб действующей газовой сети.
В 1955 г. в районе поселка «Зил» на Симферопольском бульваре были построены две электродренажные установки. С этого года начинается внедрение активной защиты на газовых сетях Москвы.
К моменту создания в 1962 г. Управления по защите газовых сетей от коррозии силами треста «Мосгаз» было построено 32 защитные установки, составлены маршрутные карты на все подземные газопроводы.
С 1969 по 1990 г. включительно велось массовое строительство электрозащитных установок — ЭЗУ (в среднем 130-140 установок в год). В 1990 г. Управлением эксплуатировалось 2 400 установок, из них 128 электродренажных.
В настоящее время в эксплуатации Управления находится 3 199 установок электрохимической защиты, в том числе 121 — дренажных, 2 969 — катодных, 99 — протекторных.
Из 4 100 км подземных газопроводов, находящихся на балансе ГУП «Мосгаз», защитными установками защищается от коррозии 2 954,4 км, в том числе газопроводов низкого давления — 1953,6 км, газопроводов высокого и среднего давления — 1000,8 км.
Кроме того, этими же установками защищается 800 км смежных с газопроводами подземных коммуникаций (водопровод, кабели связи).
Нуждается в активной защите 98,46 км, в том числе 65,75 км — от блуждающих токов, 32,71 км — от почвенной коррозии. Процент защищенности от нуждающихся в защите — 96,8, от общей протяженности — 72,1.
Основным показателем эффективной работы ЭЗУ является обеспечение на газопроводе защитного потенциала согласно требованиям ГОСТ 9-602-89.
Величина защитного потенциала напрямую зависит от качества изоляционного покрытия. Чем выше качество изоляции, тем меньше защитный ток (соответственно — потребляемая электроэнергия) и больше зона действия ЭЗУ.
К сожалению, состояние изоляционного покрытия газопроводов не всегда соответствует требованиям ГОСТ.
Подразделения ГУП «Мосгаз» за последние 20 лет проделали значительную работу по восстановлению повреждений изоляционного покрытия.
Количество повреждений сократилось с 2 000 в год (1980 г.) до 140 повреждений в настоящее время.
Анализ расследования коррозионных повреждений (25 случаев в 1999 г. и 12 случаев за 9 месяцев 2000 г.) показывает, что все случаи коррозии тела трубы произошли в местах повреждения изоляции при строительстве газопровода.
В настоящее время значительно расширена лаборатория ГУП «Мосгаз» по контролю качества работ при строительстве газопроводов, что значительно повысит качество этих работ и исключит случаи, имевшие место при выдаче заключений на проверку изоляции лабораториями при строительных организациях.
Данные меры позволят в дальнейшем свести количество коррозионных повреждений к минимуму.
Как было сказано выше, величина защитного потенциала напрямую связана с величиной тока электрозащитной установки.
В настоящий момент ГУП «Мосгаз» эксплуатирует установки, которые потребляют 1 560 000 кВт·ч в месяц. В денежном исчислении — 800 000 руб. в месяц, в год около 9 000 000 руб.
Так как финансовая ситуация в ГУП «Мосгаз», как и в других городских организациях, довольно напряженная, остро встал вопрос о снижении затрат.
Экономия электроэнергии позволит сократить соответственно и затраты.
При эксплуатации электрозащитных установок экономию возможно получить за счет следующих мероприятий:
- Применение оборудования с более высоким кпд.
- Снижение защитного тока.
- Уменьшение сопротивления контура анодного заземления.
- Повышение качества изоляционного покрытия.
В 1960-70 гг. в эксплуатацию вводилось ЭЗУ, где применялись катодные преобразователи с кпд 0,6-0,7. В настоящий момент внедряется оборудование с кпд 0,8-0,85.
Ежегодно производится замена 170-180 единиц оборудования. На сегодняшний день разработаны преобразователи с кпд 0,95.
Однако из-за их высокой стоимости — 25-27 тыс. руб. (применяемые в данный момент преобразователи стоят 11-15 тыс. руб. в зависимости от завода изготовителя) — внедрение его экономически невыгодно.
Экономический эффект можно будет получить только через 20 лет, а расчетный срок службы составляет 10 лет. В качестве анодных заземлителей (АЗ) при строительстве ЭЗУ с 1969 г. широкое применение получили глубинные анодные заземлители от 30 до 50 м (первый глубинный анодный заземлитель был построен в Германии в 1962 г.).
Применение этих заземлителей позволило значительно снизить сопротивление контура, при вводе установки в эксплуатацию оно составляет 0,5-1,1 Ом, в то время как у поверхности (6-12 м) оно равно 2-3,5 Ом, что, в свою очередь, увеличивает сроки капитального ремонта контура АЗ.
Применение глубинных АЗ позволило также снизить потребление электроэнергии (из-за низкого сопротивления контура), особенно в первые 6-7 лет эксплуатации.
Основным мероприятием по снижению потребления электроэнергии и повышению эффективности работы ЭЗУ является ликвидация несанкционированных электрических соединений газопровода с другими металлическими сооружениями (водопровод, кабели связи, теплосеть, железобетонные конструкции зданий) путем установки изолирующих фланцевых соединений (ИФ) или изолирующих вставок.
С начала массового строительства ЭЗУ (1969 г.) ИФ устанавливались только на тупиковых газопроводах, идущих на промышленные предприятия.
Установка ИФ на жилых домах в то время была технически невозможна из-за того, что газопроводы в основном имели подземные вводы и значительная часть прокладывалась в коллекторах, где имелась электрическая связь с другими коммуникациями.
В настоящее время основная часть вводов вынесена на цоколь, и силами «Мосгаза» ведется работа по выносу газопроводов из коллекторов, создались условия для установки ИФ с целью снижения потребляемой электроэнергии, повышения эффективности ЭЗУ, увеличения срока службы АЗ.
ГУП «Мосгаз» разработана и введена в действие «Концепция по защите подземных газопроводов г. Москвы от коррозии», где предусматривается установка ИФ на жилых домах. Проекты на реконструкцию газовых сетей предусматривают также установку ИФ.
Начиная с 1999 г., в план эксплуатационных Управлений ГУП «Мосгаз» также включены работы по установке ИФ на действующих сетях.
Установка фланцев решает следующие задачи:
- Расширение зоны действия защитных установок, повышение защитного потенциала или эффективности ЭЗУ.
- Снижение наладочных параметров с целью сокращения расхода электроэнергии, за счет исключения потерь тока перетекания на смежные коммуникации через несанкционированные электрические связи.
Всего в 1999 г. было установлено 550 фланцевых соединений, из них 181 были установлены в среднем по 16-20 шт. в отдельных микрорайонах в разных частях Москвы.
При проведении анализа результатов установки ИФ на 10 объектах установлено, что на 9 из них достигнут положительный результат; в среднем на 15-20% повысились защитные потенциалы, что позволило снизить величину защитного тока (в отдельных случаях на 50%), а также достичь величины защитного потенциала, удовлетворяющего требованиям ГОСТа.
Только на одном объекте в районе Садово-Кудринской ул., где было установлено 26 ИФ, положительных результатов достичь не удалось, объясняется это тем, что газопроводы данного района проложены в 1953-55 гг. и изоляционное покрытие не отвечает физико-техническим требованиям.
В настоящее время Управление с целью определения оптимальных мест установки ИФ проводит обследование газовой сети с помощью прибора РСМ (токовый топограф трубопровода) производства Англии.
Данное обследование позволяет выявить места контактов газопровода с другими подземными коммуникациями, а также величину утечки тока через вводы в дома.
По данным обследования эксплуатационными Управлениями в 2000 г. будет установлено 255 ИФ (в среднем по 26 ИФ на микрорайон), общее количество ИФ, установленных к концу года, составит 600 шт.
Остановлюсь на разработке проектов электрозащиты перекладываемых газопроводов. К сожалению, по сложившейся практике проектировщики, разрабатывающие активную защиту, подключаются к проектированию на последней стадии, когда линейная часть уже спроектирована, что в ряде случаев влечет за собой неоправданные затраты на сооружение ЭЗУ и их эксплуатацию из-за вынужденного увеличения защитного тока.
Линейную часть необходимо согласовывать с отделом, разрабатывающим мероприятия по защите на начальной стадии, что позволит значительно сократить затраты на защиту газопровода за счет снижения количества электрозащитных установок.
Источник