- Электрическая защита газопроводов
- Принципиальная схема катодной защиты подземного газопровода
- Принципиальная схема протекторной защиты подземного газопровода
- Устройство изолирующих фланцев
- Электрические методы защиты
- Особенности катодной защиты трубопроводов от коррозии — рассматриваем основательно
- Причины коррозии
- Коррозия подземных трубопроводов и средства защиты от нее
- Принцип действия электрохимзащиты
- Подверженность коррозии магистральных трубопроводных сетей
- Схема катодной защиты трубопроводов
- Электрохимическая коррозия от грунта
- Станция электрохимзащиты
- 4 Защита трубопроводов методом катодной поляризации
- Коррозия под влиянием блуждающих токов
- Установки дренажной защиты для газопровода
- Особенности катодной защиты трубопроводов
- Детальный обзор технологии катодной защиты от коррозии (видео)
- Оборудование для катодной защиты
- Коррозионное растрескивание под влиянием напряжения
- Установки гальванической электрохимзащиты
- Коррозия под влиянием микроорганизмов
- Установки с протяженными или распределенными анодами
- Видео: Защита от блуждающих токов
- 7 Какие объекты можно защищать при помощи катодной поляризации?
- Порядок работы защиты
- Особенности схем катодной защиты
- Катодная защита
- Защита от коррозии обустройством дренажа
Электрическая защита газопроводов
Пассивная защита подземных газопроводов изолирующими покрытиями дополняется электрической защитой. Задачи электрической защиты следующие.
- Отвод блуждающих электрических токов с защищаемого газопровода и организованный возврат их к электрическим установкам и сетям постоянного тока, являющимся источником этих токов.
- Подавление протекающих по газопроводу токов в местах их выхода в землю (анодные зоны) токами от внешнего источника, а также токов, возникающих за счет почвенной электрохимической коррозии, созданием гальванической цепи и защитного электрического потенциала на трубах газопровода.
- Предотвращение распространения электрических токов по газопроводам путем секционирования последних изолирующими фланцами.
Задача отвода блуждающих токов может быть решена путем создания:
- дополнительных заземлений для отвода токов в землю. Недостаток — возможность вредного влияния на соседние трубопроводы токов, стекающих с защищаемого газопровода;
- простой или прямой дренажной защиты, т.е. электрического соединения защищаемого газопровода с рельсами трамвая или электрической железной дороги с целью возврата через них токов к их источнику. Простой дренаж имеет двустороннюю проводимость, т.е. может пропускать ток туда и обратно, и поэтому применяется в устойчивых анодных зонах. Недостатком этой защиты является необходимость выключения дренажа, если изменилась полярность тока или если потенциал на газопроводе стал меньшим, чем на рельсах;
- поляризованной дренажной защиты, т.е. дренажа с односторонней проводимостью, исключающей обратное течение тока от рельсов к защищаемому газопроводу;
- усиленной дренажной защиты, т.е. такой защиты, в цепь которой для повышения эффективности включен внешний источник тока. Таким образом, усиленный дренаж — это объединение поляризованного дренажа с катодной защитой.
Задача подавления токов, протекающих по защищаемому газопроводу, может быть решена с помощью:
- Катодной защиты внешним током (электрозащита), т.е. присоединением защищаемого газопровода к внешнему источнику тока — к его отрицательному полюсу в качестве катода. Положительный полюс источника тока присоединяется к заземлению — аноду. Создается замкнутая цепь, в которой ток течет от анода через землю к защищаемому газопроводу и далее к отрицательному полюсу внешнего источника тока. При этом происходит постепенное разрушение анодных заземлений, но обеспечивается защита газопровода за счет его катодной поляризации и предотвращения стекания токов с труб в землю. В качестве внешнего источника могут применяться станции катодной защиты( СКЗ);
- Протекторной защиты, т.е. защиты путем использования в электрической цепи протекторов из металлов, обладающих в коррозионной среде более отрицательным потенциалом, чем металл трубопровода. Электрический ток возникает в системе протекторной защиты, так же как в гальваническом элементе, причем электролитом служит грунт, содержащий влагу, а электродами являются газопровод и металл протектора. Возникающий защитный ток подавляет токи электрохимической коррозии и обеспечивает создание защитного электрического потенциала на газопроводе.
Принципиальная схема катодной защиты подземного газопровода
1 — анодное заземление; 2,4 — дренажные кабели; 3 — внешний источник электри-ческого тока; 5 — точка при-соединения дренажного кабеля; 6 — защищаемый газопровод
Принципиальная схема протекторной защиты подземного газопровода
1 — защищаемый газопровод; 2 — изолированные кабели; 3 — контрольный вывод; 4 — протектор; 5 — заполнитель для протектора
Задача электрического секционирования трубопроводов решается установкой изолирующих фланцев с паронитовыми или текстолитовыми прокладками, текстолитовыми втулками и шайбами. Пример конструкции изолирующих фланцев представлен на рисунке ниже.
Устройство изолирующих фланцев
1— изолирующая текстолитовая или паронитовая втулка; 2— изолирующая шайба из текстолита, резины или хлорвинила; 3 — стальная шайба; 4 — свинцовые шайбы; 5— текстолитовое кольцо-прокладка
Основными факторами, характеризующими степень коррозионного воздействия на подземные стальные газопроводы, являются:
- величина и направление блуждающих токов в грунте;
- величина и полярность потенциала газопровода относительно других металлических подземных коммуникаций и рельсов электрифицированного транспорта;
- направление и сила токов, протекающих по газопроводу;
- состояние противокоррозионной защиты газопроводов;
- величина удельного электрического сопротивления фунта.
Все эти факторы подлежат периодическому контролю.
Периодичность элекфических измерений такова:
- в районах установок электрозащиты газопроводов и других защищаемых сооружений, а также около тяговых подстанций и депо элекфотранспорта, вблизи рельсов фамвая и элекфифицированных железных дорог и в местах пересечений газопроводов с ними — не реже одного раза в 3 месяца, а также при изменениях режимов установок электрозащиты, защищаемых сооружений или источников блуждающих токов;
- в неопасных с точки зрения электрозащиты участках — не реже одного раза в год в летнее время, а также при всяких изменениях условий, могущих вызвать электрокоррозию.
Для протекторной защиты применяют протекторы из цветных металлов — обычно магния, цинка, алюминия и их сплавов.
Контроль работы электрозащитных установок и измерение потенциалов на контактах производятся (не реже): на дренажных установках — 4 раза в месяц; на катодных установках — 2 раза в месяц; на протекторных установках — 1 раз в месяц.
Источник
Электрические методы защиты
Стальные газопроводы и резервуары, уложенные в землю, подлежат электрической защите во всех анодных и знакопеременных зонах, независимо от коррозионной активности грунта. Электрические методы защиты могут быть разделены на две основные группы:
• отвод и нейтрализация блуждающих токов;
• защита вне зоны блуждающих токов.
С помощью электрических защитных установок на газопроводах устраняются анодные и знакопеременные зоны и создаются защитные (отрицательные) потенциалы. Катодную поляризацию металлических подземных сооружений необходимо осуществлять так, чтобы создаваемые на всей их поверхности поляризационные защитные потенциалы (по абсолютной величине) были не менее 0,55 В и не более 0,80 В по отношению к неполяризующемуся водородному электроду, а также не менее -0,85 В и не более -1,15 В — к медно-сульфатному в любой среде. Потенциал неполяризующегося медносульфатного электрода по отношению к стандартному электроду принят равным 0,3 В.
Измерение поляризационных потенциалов производится по методике, приведенной в ГОСТ 9.602-2005 (приложения Р). Катодная поляризация подземных газопроводов должна осуществляться так, чтобы исключить вредное влияние ее на соседние металлические сооружения:
• уменьшение (по абсолютной величине) минимального или увеличение максимального защитного потенциала на соседних металлических сооружениях, имеющих катодную поляризацию, более чем на 0,1 В;
• опасность возникновения электрической коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты.
Для защиты газопроводов от коррозии блуждающими токами могут быть применены дренажи, катодные станции, протекторы, изолирующие фланцы и вставки, а также перемычки на смежные металлические подземные сооружения. Выбор того или иного способа защиты зависит от конкретных условий и в большинстве случаев определяется путем экспериментального сравнения эффективности их действия. В тех случаях, когда одним из способов защиты не удается обеспечить защитные потенциалы на всех участках защищаемых газопроводов, применяют сочетание нескольких способов защиты.
Электрический дренаж — способ защиты, заключающийся в отводе блуждающих токов из анодной зоны защищаемого сооружения к их источнику. Дренаж — самая дешевая защита, создающая большую зону защиты (до 5 км). Для защиты металлических подземных сооружений применимы три типа дренажей: прямой, поляризованный и усиленный. По многим причинам чаще всего применяются два последних.
В практике автономного газоснабжения дренаж имеет весьма ограниченное применение, так как не обеспечивает должного уровня защиты. Кроме того, проще предусмотреть рациональную трассу газопровода, исключающую влияние блуждающих токов от рельсового электротранспорта, еще на этапе проектирования.
Катодная защита. Принцип этого вида защиты заключается в катодной поляризации защищаемой металлической поверхности и в придании ей отрицательного потенциала относительно окружающей среды при помощи источника постоянного тока.
Защищаемое сооружение играет роль анода. Отрицательный полюс источника тока присоединяется к газопроводу (резервуару), а положительный — к заземлению (аноду). При этом постепенно разрушается анодное заземление, защищая газопровод. Этот вид применим как для защиты от коррозии блуждающими токами, так и почвенной.
Эффективность катодной защиты зависит от состояния изоляционных покрытий. При хорошей изоляции сокращается расход электроэнергии и увеличивается протяженность защищенных участков металлических сооружений. Средний расход электрической энергии в год на одну станцию катодной защиты составляет около 500 кВт^ч.
Принципиальная схема катодной защиты показана на рис. 6.2: ток от положительного полюса источника через соединительный кабель и анодное заземление переходит в грунт. Из почвы через дефектные места в изоляции ток проникает в газопровод и по дренажному кабелю направляется к отрицательному полюсу источника, создавая замкнутую цепь, по которой ток идет от анода через землю к газопроводу и далее по нему к отрицательному полюсу источника.
При этом происходит постепенное разрушение анода, что обеспечивает защиту сооружения от коррозии под влиянием его катодной поляризации. В качестве соединительных проводов применяют изолированные кабели сечением 25-77 мм2 (в зависимости от мощности станции).
Таблица 6.5. Поляризационные защитные потенциалы металла сооружения
относительно насыщенного медно-сульфатного электрода сравнения
Источник
Особенности катодной защиты трубопроводов от коррозии — рассматриваем основательно
Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.
Причины коррозии
Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.
Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:
- Взаимодействии с водой.
- Наличии в воде щелочей, солей или кислот.
Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.
При способе прокладывания “труба в другую трубу” риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.
Трубопроводы, расположенные под землей, в том числе пара и горячей воды наиболее уязвимы к коррозии. Возникает вопрос о подверженности к коррозии труб, расположенных на дне водоисточников, но лишь небольшая часть магистралей расположена в этих местах.
Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:
- магистральные;
- промысловые;
- для систем отопления и жизнеобеспечения населения;
- для сточной воды от промышленных предприятий.
Коррозия подземных трубопроводов и средства защиты от нее
На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.
- Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
- Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
- Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.
Механизм разрушения металлов при коррозии
Методы электрохимзащиты от коррозии:
Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:
- битум;
- полимерная лента;
- каменноугольный пек;
- эпоксидные смолы.
На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.
Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.
Принцип действия электрохимзащиты
Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.
Принципы построения локальной катодной защиты
В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.
Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.
Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.
Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.
Подверженность коррозии магистральных трубопроводных сетей
Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.
Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.
Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.
Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:
- От источников постоянного тока возникновение блуждающих токов.
- Воздействие микроорганизмов.
- Созданное напряжение провоцирует растрескивание металла.
- Хранение отходов.
- Соленые почвы.
- Температура транспортируемого вещества выше 300 °С.
- Углекислотная коррозия нефтепровода.
Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.
Схема катодной защиты трубопроводов
Электрохимическая коррозия от грунта
Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.
Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.
Увеличение скорости коррозии трубопровода провоцирует высокая плотность потока электронов. Не меньшее значение играет и глубина расположения магистралей, так как на ней сохраняется существенный процент влажности, и температуры, которая ниже отметки “0” не отпускается. На поверхности труб также остается прокатная окалина после обработки, а это влияет на появление ржавчины.
Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.
Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.
Станция электрохимзащиты
Станция электрохимзащиты – это устройство, которое служит источником внешнего тока в системе катодной защиты. Данная установка подключается к сети, 220 Вт и производит электричество с установленными выходными значениями.
Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.
Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.
Типы станций катодной защиты:
Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.
Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей. Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери. В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.
Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.
При установке станции защиты от коррозии учитываются следующие параметры:
- положение анодного заземления (анод-земля);
- сопротивление грунта;
- электропроводимость изоляции объекта.
4 Защита трубопроводов методом катодной поляризации
Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.
Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.
Защита трубопроводов от коррозии
Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.
Это означает, что для эффективной защиты трубопроводов требуется «передвинуть» коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).
Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.
Методика с применением источника тока
Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.
Ток-«защитник» распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.
Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.
Коррозия под влиянием блуждающих токов
Ржавчина может возникать от переменного и постоянного потока электронов:
- Образование ржавчины под воздействием тока постоянных величин. Блуждающими токами называются токи, находящиеся в почве и в конструктивных элементах, расположенных под землей. Их происхождение антропогенное. Они возникают в результате эксплуатации технических устройств постоянного тока, распространяющегося от зданий или сооружений. Ими могут быть сварочные инверторы, систем защиты от катодов и иные устройства. Ток стремится пройти по пути наименьшего показателя сопротивления, в результате, при имеющихся в наличии трубопроводах в земле, току будет гораздо легче пройти через металл. Анодом является участок трубопровода, из которого блуждающий ток выходит на поверхность почвы. Часть трубопровода, в который попадает ток, играет роль катода. На описанных анодных поверхностях токи имеют повышенную плотность, поэтому именно в этих местах образовываются значительные коррозионные места. Скорость коррозии не ограничивается и может быть до 20 мм в год.
- Образование ржавчины под воздействием переменного тока. При расположении около магистралей линий электропередач с напряжением сети свыше 110 кВ, а также параллельном расположении трубопроводов под влиянием переменных токов образовывается коррозия, в том числе коррозия под изоляцией трубопроводов.
Установки дренажной защиты для газопровода
При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.
Схема электрических дренажей
Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.
Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.
Особенности катодной защиты трубопроводов
Коррозия – основная причина разгерметизации всех типов трубопроводов. Из-за повреждения металла ржавчиной на нем образуются разрывы, каверны и трещины, приводящие к разрушению стальной конструкции. Данная проблема особенно критична для подземных трубопроводов, которые постоянно пребывают в постоянном контакте с грунтовыми водами.
Катодная защита газопроводов от коррозии выполняется одним из вышеуказанных способов (посредством внешнего выпрямителя либо гальваническим методом). Технология в, данном случае, позволяет уменьшить скорость окисления и растворения металла, из которого изготовлен трубопровод, что достигается за счет смещения его естественного коррозийного потенциала в отрицательную сторону.
Посредством практический испытаний было выяснено, что потенциал катодной поляризации металлов, при котором замедляются все коррозийные процессы, равен -0.85 В, тогда как у подземных трубопроводов в естественном режиме он составляет -0.55 В.
Чтобы противокоррозионная защита было эффективной, необходимо посредством постоянного тока снизить катодный потенциал металла, из которого изготовлен трубопровод, на -0.3 В. В таком случае скорость корродирования стали не превышает 10 микрометров в течении года.
Схема катодной защиты трубопровода
Катодная защита – наиболее эффективный метод защиты подземных трубопроводов от блуждающих токов. Под понятием блуждающих токов подразумевается электрический заряд, который попадает в землю в результате работы точек заземления ЛЭП, громоотводов либо движения поездов по железнодорожным магистралям. Точное время и место появления блуждающих токов выяснить невозможно.
Коррозийное воздействие блуждающих токов на металл происходит в случае, если металлическая конструкция имеет позитивный потенциал относительно электролита( для подземных трубопроводов электролитом выступает грунт). Катодная защита же делает потенциал металла подземных трубопроводов отрицательным, что устраняет риск их окисления под воздействием блуждающих токов.
Технология применения внешнего источника тока для катодной защиты подземных трубопроводов предпочтительна. Ее преимущества – неограниченный энергоресурс, способный преодолевать удельное сопротивление грунта.
В качестве источника тока противокоррозионная защита используется воздушные линии электропередач мощностью 6 и 10 кВт, если же на территории ЛЭП отсутствуют, могут применяться мобильные генераторы, работающие на газу и дизтопливе.
Детальный обзор технологии катодной защиты от коррозии (видео)
Оборудование для катодной защиты
Для противокоррозионной защиты подземных трубопроводов применяется специальное оборудование – станции катодной защиты (СКЗ), состоящие из следующих узлов:
- заземление (анод);
- источник постоянного тока;
- пункт управления, контроля и измерений;
- соединительные кабели и провода.
Одна СКЗ, подключенная к электросети либо к автономному генератору, может выполнять катодную защиту сразу нескольких рядом расположенных магистралей подземных трубопроводов. Регулировка тока может выполняться вручную (посредством замены обмотки на трансформаторе) либо в автоматическом режиме (если система укомплектована тиристорами).
Среди станций катодной защиты, применяемых в отечественной промышленности, наиболее технологичной установкой считается Минерва-3000 (спроектированная инженерами из Франции по заказу Газпрома). Мощности данной СКЗ достаточно для эффективной защиты 30 км подземного трубопровода.
Схема станции катодной защиты
К преимуществам установки относится:
- повышенная мощность;
- функция восстановления после перегрузок (обновление происходит за 15 секунд);
- наличие систем цифрового регулирования для контроля за рабочими режимами;
- полная герметичность ответственных узлов;
- возможность подключения оборудования для удаленного контроля.
Также широко востребованными в отечественном строительстве являются установки АСКГ-ТМ, в сравнении с Минервой-3000 они имеют уменьшенную мощность (1-5 кВт), однако в стоковой комплектации система оборудована телеметрическим комплексом, который в автоматическом режиме контролирует работу СКЗ и имеет возможность дистанционного управления.
Станции катодной защиты Минерва-3000 и АСКГ-ТМ требуют питания от электросети мощностью 220 В. Удаленное управление оборудованием выполняется посредством встроенных GPRS модулей. СКЗ имеют достаточно больше габариты – 50*40*90 см. и вес – 50 кг. Минимальный срок службы устройств составляет 20 лет.
Коррозионное растрескивание под влиянием напряжения
Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.
Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.
Под влиянием диффузии протонов производится наводораживание поверхностного слоя под влияние гидролиза при повышенных уровнях катодной защищенности и одновременного воздействия неорганических соединений.
После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.
Установки гальванической электрохимзащиты
Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.
Гальваническое оборудование служит для защиты от коррозии:
- подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
- отдельных незащищенных частей газопроводов;
- частей газопроводов, которые изолированы от источника тока;
- строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
- прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).
Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.
Коррозия под влиянием микроорганизмов
Микробиологической коррозией называется процесс образования ржавчины на трубопроводе под влиянием живых микроорганизмов. Это могут быть водоросли, грибки, бактерии, в их числе простейшие организмы. Установлено, что размножение бактерий наиболее существенно влияет на этот процесс. Для поддержания жизнедеятельности микроорганизмов необходимо создание условий, а именно нужен азот, влажность, воды и соли. Также условия такие, как:
- Температурно-влажностные показатели.
- Давление.
- Наличие освещенности.
- Кислород.
При выделении кислотной среды организмы также могут вызвать коррозию. Под их влиянием на поверхности проявляются каверны, имеющие черный цвет и неприятный запах сероводорода. Бактерии, содержащие сульфаты присутствуют практические во всех почвах, но скорость коррозии увеличивается при увеличении их количества.
Установки с протяженными или распределенными анодами
При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.
Схема анодной защиты трубопроводов
Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.
Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.
Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.
ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.
Видео: Защита от блуждающих токов
7 Какие объекты можно защищать при помощи катодной поляризации?
Кроме защиты автомобилей и трубопроводов рассматриваемые методики поляризации активно используются для предохранения от коррозии арматуры, входящей в железобетонные конструкции (здания, дорожные объекты, фундаменты и так далее). Обычно арматура представляет собой единую электросистему, которая при попадании в нее хлоридов и воды активно корродирует.
Катодная поляризация в сочетании с операцией санации бетона останавливает коррозионные процессы. В данном случае необходимо применять два типа анодов:
- основные – из титана, графита или их комбинации с покрытием металлооксидного вида, а также кремнистого чугуна;
- распределительные – стержни из сплавов титана с добавочным слоем металлической защиты либо с неметаллическим электропроводящим покрытием.
Предохранение железобетонных конструкций
Регулируя внешний ток, поступающий на железобетонную конструкцию, осуществляют выбор потенциала арматуры.
Поляризация считается незаменимой методикой для защиты стационарных строений, размещаемых на континентальном шельфе, в газовой и нефтяной промысловых сферах. Первоначальные защитные покрытия на таких объектах невозможно восстановить (требуется их демонтаж и транспортировка в сухие ангары), а значит, остается один выход – катодная защита металлов.
Защита оборудования в газовой и нефтяной сферах
Для предохранения от морской коррозии применяется гальваническая поляризация гражданских кораблей посредством анодов из цинка, магния, алюминиевых сплавов. На берегу (во время ремонтов и стоянок) судна подключают к СКЗ, аноды для которых делают из платинированного титана.
Также катодная защита используется для предохранения от разрушения внутренних частей сосудов и емкостей, а также труб, которые контактируют со сточными промышленными водами и иными агрессивными электролитами. Поляризация в данном случае увеличивает время безремонтного применения указанных конструкций в 2–3 раза.
Порядок работы защиты
При подаче напряжения в схему возникает электрическое поле, создающее на участке трубопровода катодную поляризацию. Не вдаваясь в тонкости протекающих процессов, достаточно сказать, что в результате от коррозии разрушается не трубопровод, а анод, так как она образуется именно в области «+» напряжения. Заземлитель через определенное время заменить гораздо легче и дешевле, чем одну или несколько труб на трассе.
Особенности схем катодной защиты
- В качестве источника питания могут использоваться как стационарные линии, так и мобильные генераторы.
- Максимальный потенциал защитного поля для трубопроводов, не имеющих специального покрытия, не регламентирован. В остальных случаях (например, если элементы трассы имеют полимерную изоляцию) рассчитывается индивидуально для каждой схемы.
- В зависимости от специфики трубопровода анодные заземлители могут отличаться способом расстановки (распределенные, сосредоточенные) и положением относительно уровня грунта (протяженные, глубинные).
- Материал анода выбирается для конкретной почвы из расчета эксплуатации без замены минимум 15 лет. Этот срок можно искусственно увеличить, если поместить заземлитель в какую-либо среду. Например, в измельченный кокс.
Катодная защита
Чтобы снизился процент возникновения ржавчины на поверхности труб, используются станции электродной защиты:
- Анодная, выполненная в виде заземляющих проводников.
- Преобразователи постоянных потоков электронов.
- Оборудование пункта управления процессом и контроля за этим процессом.
- Кабельные и проводные соединения.
Станции катодных защит достаточно результативны, при непосредственном соединении с линией электропередачи или генератору, они обеспечивают ингибирующее действие токов. При этом обеспечивается защита одновременно нескольких участков трубопровода. Регулировка параметров производиться вручную или автоматически. В первом случае используются обмотки трансформаторов, а во втором – тиристоры.
Наиболее распространенной на территории России является высокотехнологичная установка – Миневра -3000. Ее мощности предостаточно для осуществления защиты 30000 м магистралей.
Достоинства технического устройства:
- высокие характеристики мощности;
- обновление режима работы после перегрузок через четверть минуты;
- с помощью цифрового регулирования осуществляется контроль за рабочими параметрами;
- герметичность высокоответственных соединений;
- подключение устройства к дистанционному контролю за процессом.
Также применяются АСКГ-ТМ, хотя они их мощность невелика, их оснащение телеметрическим комплексом или дистанционным управлением позволяет им быть не менее популярными.
Схема изоляционной магистрали водопровода или газопровода должна быть на месте проведения работ.
Видео: катодная защита от коррозии – какой бывает и как выполняется?
Защита от коррозии обустройством дренажа
Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с устройством дренажа. Такая защита от образования ржавчины трубопроводов от блуждающих токов производится устройством дренажа, необходимым для отвода этих токов в другой участок земли. Всего существует несколько вариантов дренажей.
- Выполненный под землей.
- Прямой.
- С полярностями.
- Усиленный.
При осуществлении земляного дренажа производят установку электродов к анодные зоны. Для обеспечения прямой дренажной линии выполняется электрическая перемычка, соединяющая трубопровод с отрицательным полюсом от источников токов, к примеру, заземлению от жилого дома.
Поляризованный дренаж имеет одностороннюю проводимость, то есть при появлении положительного заряда на заземляющем контуре он автоматически отключается. Усиленный дренаж функционирует от преобразователя тока, дополнительно подключенному в электрическую схему, а это улучшает отвод блуждающих токов от магистрали.
Прибавка на коррозию трубопроводов проводится расчетным путем, согласно РД.
Кроме всего, применяется ингибиторная защита, то есть на трубах используется специальный состав для защиты от агрессивных сред. Стояночная коррозия возникает при простое котельного оборудования продолжительное время, чтобы этого не происходило, необходимо техническое обслуживание оборудования.
Монтер по защите подземных трубопроводов от коррозии должен обладать знаниями и навыками, обучен Правилам и периодически проходить медосмотр, и сдавать экзамены в присутствии инспектора Ростехнадзора.
Источник