Способы заполнения дефектов индикаторным пенетрантом

Способы заполнения дефектов индикаторным пенетрантом

Заполнение полостей дефектов индикаторным пенетрантом называют также пропиткой. Способы заполнения дефектов индикаторными пенетрантами и их краткие технологические характеристики представлены ниже.

Капиллярный — самопроизвольное заполнение полостей несплошностей индикаторным пенетрантом, наносимым на контролируемую поверхность смачиванием, погружением, струей, распылением с помощью сжатого воздуха или газа.

Вакуумный — заполнение полостей несплошностей индикаторным пенетрантом при давлении и их полостях менее атмосферного.

Компрессионный — заполнение полостей несплошностей индикаторным пенетрантом при воздействии на него избыточного давления.

Ультразвуковой — заполнение полостей несплошностей индикаторным пенетрантом в ультразвуковом поле с использованием ультразвукового капиллярного эффекта.

Деформационный — заполнение полостей несплошностей индикаторным пенетрантом при воздействии на объект контроля упругих колебаний звуковой частоты или статического нагружения, увеличивающего раскрытие несплошности.

Электрический — заполнение капиллярных несплошностей в присутствии внешнего электрического поля.

Магнитный или электромагнитный — заполнение полостей несплошностей индикаторным пенетрантом, обладающим магнитными свойствами при воздействии магнитного или электромагнитного полей.

Как уже видно из названий способов, в их основе лежит заполнение несплошностей под действием капиллярных сил. Использование внешних физических полей (избыточное давление, вакуумирование, ультразвуковое, магнитное или электроманитное) и вызываемые этими полями эффекты интенсифицируют процесс и позволяют увеличить глубину проникновения пенетранта и тем самым повышают чувствительность и производительность метода.

5.2.1. Капиллярный способ. При капиллярной пропитке (заполнении дефекта пенетрантом) детали обычно погружают в емкость с индикаторным пенетрантом. Если изделия имеют большие размеры, то их поливают, смазывают индикаторной жидкостью или наносят жидкость кистью, губкой, пульверизатором-краскораспылителем или с помощью аэрозольного баллона.

Время пропитки при отсутствии внешних физических воздействий варьируется в зависимости от требуемой чувствительности и используемого материала в довольно широких пределах. В таблице 5.1 приведено рекомендуемое время капиллярного заполнения дефекта люминесцирующими пенетрантами, а в таблице 5.2 ориенти­ровочное время пропитки изделий цветными пенетрантами в двух температурных диапазонах (в обоих случаях без внешних физических воздействий).

Таблица 5.1. Рекомендуемое время заполнения дефекта люминесцирующими пенетрантами

Читайте также:
  1. B.6.4.1. Способы выделения текста.
  2. I. Способы представления переменного синусоидального тока и напряжения.
  3. V. Способы и методы обеззараживания и/или обезвреживания медицинских отходов классов Б и В
  4. VI. Способы пуска
  5. VII.2.2) Способы приобретения права собственности.
  6. XII. Способы оплаты труда
  7. Акт взятия проб и образцов. Порядок заполнения.
  8. Алгоритм. Свойства алгоритма. Способы описания алгоритма. Примеры.
  9. Амортизационная политика как элемент финансовой политики организации: сущность, способы начисления амортизации и влияние на финансовые результаты
  10. Амортизация ОС. Способы
Вид изделий Выявляемые дефекты Материал изделия Пенетрант
Жидкость с эмульгатором Жидкости для последующей эмульсификации
Время пропитки
Отливки Усадочные трещины Алюминиевые сплавы 5 — 15
Магниевые сплавы
Нержавеющие стали
Бронза, латунь
Штамповки Заковы Алюминиевые сплавы
Магниевые сплавы
Нержавеющие стали
Бронза, латунь
Сварные и паяные соединения Трещины, непропаи Алюминиевые сплавы
Магниевые сплавы
Нержавеющие стали
Бронза, латунь
Детали машин Усталостные и шлифовочные трещины Алюминиевые сплавы
Магниевые сплавы
Нержавеющие стали
Бронза, латунь
Инструментальные стали
Пластмассы 5 — 80

Таблица 5.2. Ориентировочное время пропитки изделий цветными пенетрантами

Изделия и материалы Выявляемые дефекты Время пропитки (мин) при температуре
2 0 С – 16 0 С 16 0 С – 32 0 С
Металлы Термические трещины 3 — 5 10 — 15
Шлифовочные и усталостные трещины 7 — 10 15 — 20
Пластмассы, керамика Трещины и пористость 3 — 5 10 — 15
Режущий инструмент Трещины 3 — 5 10 — 15
Отливки Усадочные рыхлости, пористость 3 — 5 10 — 15
Плены 3 — 20 10 — 20
Штамповки и прокат Заковы, закаты, трещины 7 — 20 15 — 20
Сварные швы Алюминиевые сплавы Трещины 3 — 5 10 — 15
Стали 7 — 20 15 — 20

5.2.2. Вакуумный способ. Сущность вакуумной пропитки состоит в том, что заполнение полостей дефектов осуществляется при давлении воздуха в полостях ниже атмосферного. Известны три способа пропитки под вакуумом. Первый состоит в том, что детали помещают в вакуумную камеру, а индикаторную жидкость заливают в емкость, соединенную с вакуумной камерой трубкой с вентилем. В камере создают разрежение (3 — 13)∙10 2 Па, а затем открывают вентиль. При этом жидкость заполняет емкость с деталями в камере.

Затем устанавливают атмосферное давление и выдерживают заданное время пропитки.

При втором способе детали в ванночке помещают на дно вакуумной камеры, а индикаторную жидкость — в резервуаре над деталями. Резервуар соединяют с ванночкой при помощи трубки с запорным вентилем, выведенным наружу. При вакуумировании газы, растворенные в индикаторной жидкости, интенсивно выделяются и вспенивают ее. Затем жидкость заливают в ванночку и осуществляют пропитку.

При третьем способе жидкость в ванночке ставят на дно ванной камеры, а детали подвешивают над ванночкой. С помощью наружного приспособления детали можно опускать в ванночку. Камера вакуумируется, детали опускаются в емкость и выдерживаются нужный промежуток времени.

5.2.3. Компрессионный способ. Он заключается в заполнении полостей дефектов индикаторным пенетрантом при воздействии на него избыточного давления. При этом способе на изделие наносится пенетрант и оно помещается в герметичную камеру, где создается избыточное давление. Пенетрант заходит в дефекты под действием сил капиллярного давления и избыточного давления.

Недостатком вакуумного, а также и компрессионного метода является использование сложных и громоздких установок. Кроме того, в вакууме неизбежно осуществляется откачка вместе с воздухом летучих компонентов индикаторных жидкостей, что, естественно, изменяет их физико-химические свойства и может сказаться на результатах контроля.

5.2.4. Ультразвуковой способ. При ультразвуковой пропитке в индикаторном пенетранте возбуждают ультразвуковые колебания промышленной частоты 20-40 кГц. Проникновение жидкости в капилляры интенсифицируется за счет переменных давлений, колебаний частиц жидкости и вторичных акустических явлений, (кавитация и др.). Наиболее эффективно применение ультразвука в режиме, обеспечивающем проявление ультразвукового капиллярного эффекта. При этом время озвучивания до момента достижения максимальной чувствительности сокращается. Скорость заполнения пенетрантами возрастает в несколько раз.

Отличительной особенностью ультразвукового способа заполнения дефектов является то, что поток жидкости, направленный в капилляр и образующийся под действием ультразвука, не сплошной, а состоит из отдельных высокоскоростных микроструй, образующихся при захлопывании кавитационных пузырьков, что обеспечивает интенсивное удаление воздуха и загрязнений из полостей дефектов и полное заполнение их пенетрантами.

Применение ультразвука при заполнении пенетрантом полостей чистых дефектов позволяет заметно увеличить выявляемость дефектов, особенно в случае, когда используются пенетранты с низкой проникающей способностью. В случае, например, загрязнения деталей алмазной полировочной пастой количество выявленных де­фектов возрастает на 70% при ультразвуковом способе заполнения дефектов индикаторной жидкостью (пенетрант ЛЖ-6А).

При использовании ультразвука желательно учитывать следующие рекомендации для достижения наибольшей чувствительности:

1. Оптимальный зазор между поверхностью контролируемой детали и излучателем ультразвука должен быть в пределах 1 — 2 мм. Уменьшение зазора затрудняет условие обмена индикаторной и моющей жидкости в зазоре, ухудшает удаление загрязнений и активность кавитации. Увеличение зазора допускается. Например, при очистке в воде или водных растворах загрязнения достаточно эффектно вытесняются на расстоянии до нескольких десятков сантиметров от излучателя. Однако для достижения высокой чувствительности хотя бы до образцового метода в этом случае требуется экспонирование в звуковом поле в течение 10 мин.

2. Амплитуда колебаний излучателя должна обеспечивать наличие развитой кавитационной области в озвучиваемом объеме.

Оптимальная амплитуда может быть установлена по максимуму воздействия ультразвука на подъем жидкости в капилляре. Для этой цели можно использовать простое устройство, состоящее из капилляра, погруженного в жидкость.

3. Положение детали относительно излучателя. При наличии кавитационной области на обрабатываемой поверхности положение этой поверхности относительно излучателя практически не имеет значения. Если размеры детали в плоскости, параллельной излучателю, порядка или больше длины звуковой волны в рабочей жидкости, то на тыльной стороне такой детали кавитация не возникает ни при каких интенсивностях. В связи с этим их необходимо либо переворачивать при обработке, либо озвучивать одновременно с разных сторон несколькими излучателями. Мелкие изделия также целесообразно озвучивать с двух сторон.

4. Температура жидкости. Оптимальная температура жидкости зависит в основном от таких ее свойств, как вязкость и упругость пара, и для ацетона составляет 10-15°С, воды — 50-60°С, 40%-й водно-глицериновой смеси — 80-85°С, керосина – 20 -30°С, пенетранта ЛЖ-6А – 30 — 40°С.

5. Время экспонирования в звуковом поле, необходимое для достижения требуемых показателей, существенно зависит от всех остальных параметров, определяющих режим (амплитуды, зазора, температуры). Если зазор не превышает 5 мм, то время озвучивания при оптимальной амплитуде составляет 2-3 мин, при зазорах больше 50 мм — до 5 мин. С ростом зазора время экспонирования увеличивается.

5.2.5. Деформационный способ. Сущность деформационной пропитки состоит в воздействии на объект упругих колебаний деформационных нагрузок. В результате деформации дефекты попеременно сужаются и расширяются, что облегчает проникновение пенетранта в их полости или же увеличивается минимальный размер дефекта.

5.2.6. Электрический способ. Перспективно нанесение пенетранта распылением в электрическом поле. Преимуществами способа нанесения жидких составов на поверхности изделий являются быстрота, возможность автоматизации, экономное расходование пенетранта.

5.2.7. Магнитный способ. Заполнение дефектов пенетрантом в магнитном или электромагнитном поле может применяться для ускорения проникновения пенетрантов, обладающих магнитными свойствами, например приготовленных на основе магнитной жидкости. Эти жидкости отличаются от обычных суспензий, во-первых, размерами магнитных частиц, которые по порядку величины приближаются к размерам молекул (2-10 нм), а во-вторых, тем, что частицы стабилизированы поверхностно-активными веществами. В результате такая жидкость ведет себя в магнитном поле как однофазная система, не выпадает в осадок и не разделяется под действием пондеромоторного взаимодействия. Проникновение пенетранта, приготовленного на магнитной жидкости, в полость дефекта ускоряется за счет взаимодействия магнитной жидкости с магнитным полем. При нанесении магнитного пенетранта изделие размещается в магнитном поле таким образом, чтобы градиент магнитного поля был направлен по внешней к контролируемой поверхности нормали, а при проявлении направление градиента магнитного поля меняют на противоположное, чем достигается полное извлечение индикаторной жидкости из дефекта и образование максимального размера следа.

Дата добавления: 2015-04-05 ; просмотров: 11 ; Нарушение авторских прав

Источник

Капиллярный контроль

Неразрушающий контроль, в том числе капиллярный метод, – это эффективное, а в ряде случаев единственно возможное средство предотвращения аварийных ситуаций в объектах повышенной опасности. Задача ученых, инженеров-конструкторов, инженеров-технологов – разработать аппаратуру и технологию контроля, которая давала бы возможность дефектоскописту определить только пригодные к эксплуатации детали и не пропустить дефектные.

Дефектоскопист – последняя инстанция, которая может предотвратить аварию, отказ, непредвиденную остановку машины или механизма. Особая ответственность лежит на дефектоскопистах, контролирующих детали авиационной и космической техники, локомотивов и вагонов; оборудования атомных, энергетических и химических производств, представляющих огромную опасность не только для человека, но и окружающей среды.

Во всем мире неразрушающий контроль качества и техническая диагностика – это целая индустрия, неотъемлемая часть производства и эксплуатации всех технических устройств: сотни тысяч специалистов ежедневно обеспечивают отбраковку некачественных деталей при производстве (качество) и своевременное обнаружение опасных трещин на работающих технических устройствах (диагностика), прежде всего опасных для жизни, здоровья людей и окружающей среды (безопасность).

Уровень развития передовых стран мира на современном этапе характеризуется не столько высоким объемом производства и ассортиментом выпускаемой продукции, сколько показателями качества, надежности и безопасности.

В высокоразвитых странах затраты на контроль качества составляют в среднем 1 – 3 % от стоимости выпускаемой продукции, а в таких отраслях промышленности, как оборонная, атомная, а так-же аэрокосмическая, затраты на контроль качества возрастают до 12 – 18 %. Трудозатраты на контроль сварных соединений в строительстве трубопроводов большого диаметра и большой протяженности достигают 10 %. Во всем мире давно поняли, что экономия на контроле – это мнимая экономия, которая в конечном итоге оборачивается огромными затратами на преодоление последствий аварий и катастроф.

На стадии изготовления необходима объективная информация о свойствах детали, которая даёт возможность судить о качестве детали, её пригодности к работе и конкурентоспособности изделия в целом.

Использование средств неразрушающего контроля в процессе эксплуатации позволяет диагностировать техническое состояние объекта, определить его остаточный ресурс, сроки дальнейшей безопасной эксплуатации. Диагностика особенно актуальна для таких потенциально опасных технических объектов, как оборудование магистральных нефте- и газопроводов, химических и нефтеперерабатывающих производств, сосудов под давлением, подъемно-транспортных устройств и др., особенно если принять во внимание, что среди них многие уже выработали свой ресурс.

Суждение о работоспособности и качестве достигается через выявление с помощью приборов неразрушающего контроля и технической диагностики:

  • поверхностных и внутренних дефектов сплошности материала, деталей и элементов конструкций (трещин, раковин, пор, расслоений и т.п.);
  • недопустимых изменений структуры материала и физико-механических свойств (размер зерна, плотность, упругие и прочностные характеристики, твердость, внутренние напряжения, влажность и др.);
  • отклонений геометрических параметров (толщин покрытий, поверхностно упрочненных слоев, толщин стенок деталей и элементов конструкций и др.);
  • внутреннего строения объектов (интроскопия).

Капиллярная дефектоскопия является старейшим методом неразрушающего контроля и самым чувствительным методом неразрушающего контроля поверхностных дефектов. Капиллярный метод позволяет выявить поверхностные трещины раскрытием 0,5 – 1 мкм и более. Он основан на проникновении в поверхностные дефекты специальных жидкостей, благодаря которым повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного участка поверхности детали. Достоинством метода является то, что точно фиксируется местоположение дефекта, его ориентация и размеры. Его эффективность в большой степени зависит от правильности соблюдения технологических режимов всех стадий, которые определяются физико-химическими процессами, протекающими при проведении контроля.

Наиболее эффективен капиллярный метод для неразрушающего контроля больших площадей, особенно со сложной геометрией и в случаях массовых производств. Технологов прельщает возможностью обнаружить дефект на ранних стадиях изготовления, а также на всех стадиях технологического процесса изготовления. Технология капиллярной дефектоскопии сравнительно проста и не требует сложного дорогостоящего оборудования.

Источник

Читайте также:  Половой путь как способ передачи вич
Оцените статью
Разные способы