Основные способы задания рабочей точки на входных ВАХ биполярного транзистора
На рис. 15 для задания рабочего режима входной и выходной цепей используется два источника питания На практике обычно применяется один источник питания – Eк, а режим по постоянному току входной цепи осуществляется схемным путем. На рис.18 приведены некоторые способы задания рабочей точки при включении по схеме с общим эмиттером. Разделительные конденсаторы С1, С2, СЭ выбираются с достаточно большой емкостью, их сопротивлением в рабочей области частот можно пренебречь.
|
Простейшая схема приведена на рис. 18а. Эта схема с фиксированным током базы, она называется также схемой со стабилизацией тока базы, т.к. при достаточно большом EК (EК>>UБЭ) IБ не меняется при изменении UБЭ вследствие изменения температуры.
Параметры выбранной рабочей точки входной и выходной цепей могут изменяться при изменении температуры в результате изменения токов IЭ и IБ вследствие изменения токов IКБО (ОБ) , IКЭО (ОЭ). Для оценки влияния изменения тока IКБО (IКЭО) на ток коллектора IК используют параметр Кнест – коэффициент нестабильности, определяемый как
Простейшая схема не обеспечивает стабильности коллекторного тока при изменении температуры, коэффициент нестабильности велик:
Схема выбора и стабилизации рабочей точки с резистором между базой и коллектором (рис.18б) позволяет снизить коэффициента нестабильности в [1+h21Э×(RК + RБ)] раз относительно схемы рис. 18а:
Однако данная схема приводит к появлению обратной связи по напряжению а также к снижению входного сопротивления транзистора. Для исключения этих явлений (недостатков) сопротивление RБ разбивают на две части и заземляют среднюю точку через конденсатор.
Для стабилизации рабочей точки транзистора наиболее часто применяют схему с делителем напряжения на базе и резистором в цепи эмиттера, показанную на рис. 18в. Сопротивления R1, R2 выбираются достаточно малыми, чтобы ток, проходящий через них, во много раз превышал ток базы IБ, (обычно Iд=(5 ¸10)×IБ). В этом случае потенциал базы относительно земли почти не зависит от тока базы. В цепь эмиттера включен резистор RЭ, обеспечивающий отрицательную обратную связь по постоянному току. Увеличение тока коллектора (эмиттера) вызывает уменьшение разности потенциалов UБЭ, что приводит обратно к уменьшению тока коллектора IК.
Эта схема при правильном выборе параметров обеспечивает высокую стабильность рабочей точки и выходных характеристик с изменением температуры; стабильность режима при замене одного транзистора другим.
Анализ схемы приводит к следующему выражению для коэффициента нестабильности:
При правильно спроектированной схеме величина Rэh21э/(Rэ+R1)>>1, тогда Кнест=1+R1/Rэ. Обычно резистор R2 берут в несколько раз больше, чем входное сопротивление транзистора по переменному току.
Источник
Простейшие способы установки рабочей точки в схеме с общим эмиттером (ОЭ)
На рис. 3.3 приведена упрощенная схема включения биполярного транзистора \(n\)-\(p\)-\(n\)-типа с ОЭ, а на рис. 3.4 — семейства типичных статических характеристик этой схемы.
Рис. 3.3. Упрощенная схема включения биполярного транзистора n-p-n-типа с ОЭ
Рис. 3.4. Статические характеристики схемы с ОЭ
Внимательное рассмотрение этих характеристик позволяет сделать ряд полезных заключений о работе транзистора в анализируемой схеме. Естественно, рассматривать следует те участки характеристик, которые соответствуют активному режиму работы транзистора.
Во-первых, из входных характеристик (рис. 3.4,а) видно, что при достижении током базы \(
Итоговый вывод следующий: при включении по схеме с ОЭ на положение рабочей точки биполярного транзистора (т.е. на ток коллектора \(
На практике получили распространение два способа обеспечения заданного положения рабочей точки по постоянному току: схема с фиксированным током базы (рис. 3.5) и схема эмиттерно-базовой стабилизации (рис. 3.6).
Рис. 3.5. Схема с фиксированным током базы
Рис. 3.6. Схема эмиттерно-базовой стабилизации
В первой схеме стабильность всех показателей каскада по постоянному току базируется на поддержании устойчивого значения тока базы транзистора \(
\(
Стабильность тока базы в рассматриваемой схеме приводит к стабильности тока коллектора, поскольку
где \(\beta_<ст>\) — статический коэффициент передачи тока базы в схеме с ОЭ.
Но данная формула также демонстрирует и основной недостаток схемы с фиксированным током базы (рис. 3.5).
Дело в том, что при производстве биполярных транзисторов возникает большой разброс в возможных значениях коэффициента \(\beta_<СТ>\), т.е. для разных экземпляров приборов необходимо устанавливать разные токи базы \(
Как следует из названия, в этой схеме положение исходной рабочей точки каскада стабилизируется за счет поддержания неизменного значения напряжения на переходе эмиттер—база транзистора. Простейший способ обеспечения данного режима состоит в применении подключенного к базе транзистора делителя напряжения на двух резисторах \(R1\), \(R2\), ток через который \(
\(
Поскольку такой физический параметр транзистора, как сопротивление эмиттерной области \(r_Э\), остается достаточно стабильным при массовом производстве, то и отпадает необходимость подбирать элементы делителя напряжения под каждый конкретный прибор — достаточно лишь один раз произвести расчеты, учитывая типономинал применяемых транзисторов и требуемое значение тока коллектора (эмиттера). Таким образом, схема эмиттерно-базовой стабилизации оказывается гораздо более удобной при массовом производстве и поэтому используется гораздо чаще (у нее есть и другие достоинства, сделавшие ее столь популярной).
Источник
Методы задания рабочего режима (рабочей точки) активного элемента и его стабилизация.
В предыдущей схеме рабочая точка БТ задавалась двумя источниками ЭДС. Применять два источника напряжения не целесообразно т.к. это отдельные устройства и требуют дополнительных затрат. Для создания рабочей точки транзистора обычно используют источник Ек, а рабочую точку на базе задают с помощью резисторов путем задания необходимого тока базы или напряжения база-эмиттер. Рассмотрим основные схемы.
1) Схема с фиксированным током базы Iб.рт..
В этой схеме рабочая точка задается током базы Iб.рт..
Его величина задается сопротивлением резистора Rб. Его величина выбирается из соотношения
а величина резистора Rк выбирается из соотношения
Преимущество схемы: простота схемы.
Недостаток: рабочая точка, т.е. Uкэ рт сильно зависит от температуры окружающей среды и параметров конкретного транзистора.
2.) Схема с резистивным делителем в цепи базы.
В этой схеме — R1, R2 – резистивный делитель цепи базы, с его помощью задается необходимая величина Uбэ рт. (Он делит напряжение Ек и получает необходимое напряжение на базе).
3.) Схема с эмиттерной стабилизацией рабочей точки.
RЭ – сопротивление эмиттерной цепи, с его помощью создается отрицательная обратная связь, которая стабилизирует положение рабочей точки. Схема работает так. С возрастанием температуры окружающей реды IК.РТ возрастает, это приводит к тому, что UКЭ.РТ уменьшается. Так происходило бы, если бы не было RЭ, а с RЭ происходит так. С возрастанием температуры IК.РТ возрастает (UК.РТ должно бы уменьшаться, но) IЭ.РТ»IК.РТ, при этом URЭ возрастает, а UБЭ.РТ=(UБ1-URЭ) уменьшается, уменьшение этого напряжения эквивалентно уменьшению IБ.РТ, что приводит к тому, что Ik0 уменьшается, а Uкэ остается постоянным, т. е. UКЭ.РТ = const.
4.) Схема с коллекторной стабилизацией рабочей точки.
В этой схеме рабочая точка задается током в цепи базы который возникает за счет обратной связи. Благодаря ему происходит стабилизация выходного напряжения при изменении температуры окружающей среды.
Источник
Усилитель на биполярном транзисторе
Сразу определимся, что обозначает термин «усилитель». Вот как это трактует Wikipedia: «Термин усилитель в своём первичном (основном) значении относится к преобразованию (увеличению, усилению) одной из характеристик исходного входного сигнала (будь то механическое движение, колебания звуковых частот, давление жидкости или поток света), при этом вид сигнала остаётся неизменным».
В нашем случае речь идет о том, что транзистор будет усилителем тогда, когда мощность сигнала, полученная на его выходе, больше мощности сигнала, поданной на его вход и при этом вид сигнала остается прежним.
При помощи транзисторов можно конструировать различные виды усилителей, но на практике наиболее чаще применяют линейные усилители, или усилители класса А. В них переменный выходной сигнал многократно увеличенный по мощности должен иметь ту же форму, что и входной, т.е. существует линейная зависимость.
Обычно в исcледовательских работах на вход усилителя на биполярном транзисторе подают синусоидальные колебания. Но звуковой (акустический) сигнал речи, музыки имеет более сложную форму в отличии от синусоидального. Можно ли простым синусоидальным сигналом протестировать реальный звуковой сигнал?
Можно, потому что самый сложный звуковой сигнал, согласно теореме Фурье, состоит из суммы большого числа других синусоидальных колебаний, представляющих собой частотный спектр. Если за основную частоту взять сигнал с частотой равной f1=440Гц, то в акустическом сигнале будут присутствовать, так называемые, вторая гармоника 2f1 с частотой вдвое большей основной частоты равной 2f1=880Гц, третья гармоника которая больше втрое больше основной частоты и равна 3f1=1320ГЦ и т.д. А тональность звука будет зависеть не только от частоты гармоник, а еще и от величин амплитуд отдельных гармоник.
Теоретически число гармоник может быть бесконечно велико, но практика показывает, что с увеличением порядкового номера гармоник их амплитуда уменьшается. Поэтому достаточно учесть только первые 5-7 гармоник, а остальными можно пренебречь из-за их незначительных амплитуд.
Так что, если усилитель хорошо усиливает несколько определенных частот спектра (включая самую низкую и самую высокую), то, очевидно, он хорошо усиливает и самое сложное колебание.
Но в усилителе на биполярном транзисторе во время работы на различных участках схемы действуют одновременно не только переменные но и постоянные напряжения. В результате в цепях протекают одновременно постоянный и переменный токи, или, как говорят, постоянная и переменная составляющие тока . И для того, чтобы разобраться, как появляются и чем отличаются эти токи, нужно определиться из чего состоит звуковой сигнал и как он преобразовывается в электрический сигнал.
Это сделаем на примере работы схемы с угольным микрофоном ( рис.1 ), где рассмотрим как преобразовывается акустический звук в электрический ток. В схеме присутствуют микрофон М , источник питания GB , сопротивление R , нагрузочное сопротивление Rн и разделительный конденсатор С .
Угольный микрофон представляет собой корпус в виде капсулы в котором к металлической мембране 1 прикреплен подвижный электрод 2 , а напротив — неподвижный электрод 6 . Между ними находится графитовый порошок 5 , который имеет свойство при изменении своей плотности изменять электрическое сопротивление.
По схеме в цепь микрофона последовательно включен гальванический элемент GB . Когда на микрофон не подается звук в микрофоной цепи протекает постоянный ток. При подаче звука мембрана микрофона колеблется, нажимая подвижным электродом то сильнее, то слабее на графитовые зерна, в зависимости от величины звукового давления. От этого меняется плотность порошка, а значит меняется и его сопротивление между электродами. Значит при большой величине звука мембрана уплотняет порошок и его сопротивление уменьшается, что приводит к увеличению тока через микрофон , а при малом звуке сопротивление увеличивается и ток на нагрузке уменьшается. В результате ток в цепи изменяется так же, как и колебания звука.
Следовательно, сам микрофон не является источником напряжения звуковой частоты, а только преобразовывает постоянное напряжение источника питания в электрический звуковой сигнал, величина усиления которого зависит от величины тока GB . А теперь эти электрические процессы рассмотрим на графиках ( рис.2 ).
При отсутствии звука в цепи микрофон М — сопротивление R — источник GB протекает постоянный микрофонный ток Iмо ( постоянная составляющая ) и на сопротивлении R образуется падение напряжения по постоянному току UR , а конденсатор С не пропускает постоянное напряжение. Поэтому на выходе нет напряжения.
При появлении звука в этой же цепи протекает уже ток, состоящий из постоянной составляющей тока Iмm и переменной составляющей тока с амплитудой URm . Переменная составляющая тока проходит через конденсатор и появляется на выходе. Ее амплитуда будет зависит от величины реактивного сопротивления конденсатора Xc и нагрузочного сопротивления Rн .
Из всего этого можно сделать следующие выводы:
— при отсутствии сигнала в цепях схемы присутствует только постоянная составляющая тока, создаваемая источником питания;
— при наличии сигнала в цепях существуют одновременно постоянная и переменная составляющие тока, при этом в один полупериод они имеют одно направление (потенциал) и суммируются, а в другой — противоположного направления и вычитаются.
А теперь,чтобы понять, как работает усилитель на биполярном транзисторе, рассмотрим уже конкретную схему на n-p-n транзиcторе КТ206А, в которой в коллекторную цепь включено нагрузочное сопротивление R= 2 кОм. И на этом примере покажем, что мощность (напряжение и ток) переменной составляющей тока на нагрузке больше, чем мощность на входе транзистора.
Сначала рассмотрим схему на рис.3 , где база транзистора соединена с эмиттером.
В этом случае транзистор закрыт и коллекторный ток Iк ≈ 0, т. к. сопротивление коллекторно — эмиттерного перехода велико (от 0,1 до 1МОм). Поэтому почти все напряжение источника тока GB2 падает на этом переходе (Uкэ ≈ 9В), а на резисторе падение напряжения почти равно нулю (UR ≈ 0).
При подаче на базу транзистора напряжение смещения 0,5 В от источника GB1 ( рис.4 ) появится небольшой базовый ток Iб = 10 μА, величину которого определяем по входной характеристике транзистора.
Данный транзистор имеет коэффициент усиления β = 100, поэтому коллекторный ток будет равен
Iк = β·Iб = 100·10 = 1000 μА = 1 mA.
Этот ток будет образовывать на сопротивлении R падение напряжения
UR = Iк·R =1·10ˉ³·2·10³ = 2 B,
а напряжение между коллектором и эмиттером будет равно разности между напряжением батареи GB2 и падением напряжения на сопротивлении UR : Uкэ = 9 — 2 = 7 B.
Теперь на вход усилителя на биполярном транзисторе от генератора Г подадим синусоидальный сигнал с амплитудой Uг = 20 mB и рассмотрим какой будет выходной сигнал при положительном и отрицательном полупериодах.
При положительном полупериоде ( рис.5 ) напряжение сигнала генератора (переменная составляющая тока) будет суммироваться с напряжением источника тока UGB1 (постоянная составляющая тока) и на входе будет действовать уже сумма напряжений:
Uбэ = UGB1+Uг =0,5+0,02 = 0,52 В.
Из входной характеристики транзистора находим базовый ток уже по напряжению смещения в 0,52. Он увеличится до Iб = 14 μА, а коллекторный ток будет
Iк = β·Iб = 100·14 = 1400μА = 1,4 mA,
который создаст падение напряжение на сопротивлении:
UR = Iк·R = 1,4·10ˉ³·2·10³ = 2,8 B,
а напряжение коллектор — эмиттер будет равен
Uкэ = UGB2 — UR =9 -2,8 =6,2 B.
При отрицательном полупериоде ( рис.6 ) напряжение генератора будет вычитаться из напряжения источника тока GB1 и на входе транзистора будет напряжение равное
Uбэ = UGB1 — Uг =0,5 — 0,02 = 0,48 В.
Из входной характеристики при таком значении Uбэ базовый ток равен Iб = 6 μА, значить коллекторный ток будет
Iк = β·Iб = 100·6 = 600 μА = 0,6 mA. Падение напряжение на R:
UR = Iк·R = 0,6·10ˉ³·2·10³ = 1,2 B,
а напряжение на к-э переходе:
Uкэ = UGB2 — UR = 9 — 1,2 = 7,8 B. Если сравнить оба состояния ( рис.5,6 ) при подаче сигнала с генератора и с состоянием без входного сигнала ( рис.4 ) можно сделать следующие выводы :
1. При отсутствии сигнала (состояние покоя) на базе транзистора напряжение равно 0,5 В и базовый ток — 10 μА.
Коллекторный ток равен 1 mA, падение напряжение (постоянная составляющая) на нагрузочном сопротивлении равно 2 В, а напряжение на коллекторе -7 В.
2. При подаче входного сигнала амплитуда переменной составляющей базового тока будет равна увеличению базового тока Iб сиг — Iб пок = 14 — 10 = 4 μА, а амплитуда переменного коллекторного тока равна увеличению этого тока Iк сиг — Iк пок = 1,4 — 1 = 0,4 mA.
Следовательно коэффициент усиления транзистора по току, включенный как в данной схеме, равен:
Кi = Iвых/Iвх = 0,4·10ˉ³/0,004·10ˉ³ = 100.
3. При подаче сигнала на усилитель на нагрузочном сопротивлении напряжение увеличивается, по сравнению с напряжением в состоянии покоя, на URсиг — URпок = 2,8 — 2 = 0,8 В.
Это и будет величиной амплитуды выходного сигнала усилителя на биполярном транзисторе. А так как входной сигнал от генератора имеет амплитуду 20 mB, то коэффициент усиления по напряжению будет
Кu = Uвых/Uвх = 0,8/20·10ˉ³ = 40.
Теперь можно определить коэффициент усиления по мощности:
Кр = Кu· Кi = 40·100 = 4000.
Рабочая точка транзистора
Чтобы транзистор работал как усилитель для него выбираются такие параметры по постоянному току, которые обеспечивали бы нормальный режим усиления при подаче входного сигнала.
Перечислим эти необходимые параметры:
1. Напряжение смещения на базе транзистора в режиме покоя называемое Uэбп или Uбэп .
2. Базовый ток покоя Iбп . Он зависит от напряжения смещения Uбэп и они определяют рабочую точку транзистора на его входной характеристике ( рис.7,8 ).
3. Коллекторный ток покоя Iкп , который в β раз больше базового тока покоя.
4. Коллекторное напряжение покоя Uкэп не должно быть меньше 0,8 — 1 В, т.к. при очень малых коллекторных напряжениях базовый ток не управляет коллекторным током, потому что в этом интервале характеристики сливаются в одну линию. На рис.9 этот интервал равен Uо ст .
5. Коллекторные напряжение Uкэп и ток Iкп покоя определяют рабочую точку транзистора на его выходных характеристиках ( рис.9 ).
Если выбрана определенная рабочая точка, то все эти параметры не могут быть произвольными, а связаны между собой и характеризуют только эту рабочую точку транзистора. Это наглядно видно на рис.10 на котором отражены входные, выходные характеристики и характеристика прямой передачи по току, которая представляет собой связь между входным и выходным токами транзистора ( см. «Статические характеристики прямой передачи по току»).
Масштабы величин любых двух соседних характеристик должны быть одинаковы.
На выходных характеристиках изображена рабочая точка транзистора А , с параметрами Iкп = 1 mA и Uкэп = -4,5 В.
Проектируем эту точку на остальные характеристики.
Получается, что чтобы иметь Iкп = 1 mA, надо чтобы ток Iбп = 20 μА был при напряжении смещения Uэбп = 0,15 В.
Одной из важных задач при проектировании транзисторных схем является правильный выбор рабочей точки транзистора.
При подаче определенного напряжения смещения мы этим определяем рабочую точку на входной характеристике, а значит, тем самым определяется базовый и коллекторный токи покоя.
Но когда на вход подается переменное напряжение сигнала ( рис.11 ) напряжение смещения становится то больше, то меньше в зависимости от формы сигнала и рабочая точка А колеблется в интервале между точками 1 и 2 .
Это приводит к колебанию базового, и, соответственно, коллекторного токов. Появляется на входе и выходе переменные составляющие токов с амплитудами Iбm и Iкm . И здесь важно определить величину напряжения смещения в зависимости от амплитуды входного сигнала.
На рис.12 показано как при малом напряжении смещения из двух синусоидальных сигналов с разными по величине амплитудами без искажений усилится только слабый сигнал, а сильный сигнал «обрежется».
А на рис.13 выбрана рабочая точка транзистора Б с бОльшим напряжением смещения и все сигналы усилились без искажений.
Кажется, что из этого можно сделать вывод, что лучше выбрать рабочую точку с большим напряжением смещения, чем морочить голову рассчитывая рабочие точки для каждого каскада в зависимости от величины амплитуды входного сигнала.
Но это так кажется. При выборе бОльшего базового тока входное сопротивление транзистора, которое равно отношению малого изменения напряжения на базе ∆Uб к вызываемому им изменению тока базы ∆Iб ( Rвх = ∆Uб/∆Iб ), уменьшается и возрастает нагрузка по переменному току предыдущего каскада,что приводит к уменьшению его усиления.
На рис.8 приведен пример, как изменяется входное сопротивление от выбора рабочей точки. Точка В находится в начале входной характеристики транзистора с небольшой крутизной. Выберем интервал напряжения на базе от 0,4 до 0,5 вольт. Тогда изменение базового тока будет от 5 до 13 μА. Рассчитаем входное сопротивление:
∆Uб = 0,5-0,4 = 0,1 В; ∆Iб = 13-5 = 8 μА;
Rвх = 0,1/0,008·10ˉ³ = 12,5·10³ Ом = 12,5 кОм.
В точке Б крутизна характеристики больше и в интервале базового напряжения ∆Uб = 0,65-0,55 = 0,1 В будет следующие приращение тока
∆Iб = 68-23 = 45 μА.
Тогда входное сопротивление равно:
Rвх = 0,1/045·10ˉ³ = 2,2·10³ Ом = 2,2 кОм.
В качестве примера бралась входная характеристика маломощного транзистора и поэтому сопротивления хоть и отличаются, но величина их довольно большая.
В транзисторах средней и большой мощности коллекторные напряжения и базовые токи побольше, а входные сопротивления, соответственно, поменьше. Они будут в пределах десятков — сотен Ом, которые могут уже существенно увеличивать нагрузку предыдущего каскада, что может привести к искажению его выходного сигнала.
Выбор рабочей точки транзистора находится в тесной зависимости от амплитуды усиливаемого сигнала.
Например, рабочая точка А ( рис.14 ) выбрана правильно для малого сигнала.
Рабочая точка Б подходит для большого сигнала, а для малого сигнала этот режим не экономичен, т.к. транзистор из-за повышенного базового тока покоя и, соответственно повышенного начального коллекторного тока, будет потреблять больше энергии источника тока.
Транзистор может использоваться не только как линейный усилитель, но и в качестве нелинейного усилителя у которого выходной сигнал отличается от входного.
Поэтому различают несколько классов усиления. Практически этого добиваются путем выбора рабочей точки.
Источник