- Лекция 3. Плоскость. Способы ее задания, положение относительно плоскостей проекций
- Лекция 3. Плоскость
- 3.1. Способы задания плоскости на ортогональных чертежах
- 3.2. Плоскости частного положения
- 3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
- Упражнение
- 3.4. Главные линии плоскости
- 3.5. Взаимное положение прямой и плоскости
- 3.5.1. Параллельность прямой плоскости
- 3.5.2. Пересечение прямой с плоскостью
- Упражнение
- Упражнение
- 3.6. Определение видимости методом конкурирующих точек
- 3.7. Перпендикулярность прямой плоскости
- 3.8. Взаимное положение двух плоскостей
- 3.8.1. Параллельность плоскостей
- Упражнение
- 3.8.2. Пересечение плоскостей
- Упражнение
- Упражнение
- Упражнение
- Упражнение
- 3.8.3. Взаимно перпендикулярные плоскости
- Упражнение
- Упражнение
- 3.9. Задачи для самостоятельного решения
Лекция 3. Плоскость. Способы ее задания, положение относительно плоскостей проекций
Плоскость. Способы ее задания, положение относительно плоскостей проекций
Положение плоскости в пространстве может быть однозначно определено:
1) тремя точками, не лежащими на одной прямой (рис. 2.20 а);
2) прямой и точкой, не лежащей на этой прямой (рис. 2.20 б);
3) двумя параллельными прямыми (рис. 2.20 в);
4) двумя пересекающимися прямыми (рис. 2.20 г);
5) плоской фигурой (рис. 2.20 д);
6) следом плоскости (рис. 2.20 е).
На КЧ плоскость задается проекциями этих элементов, но не ограничивается ими, т.к. она безгранична и бесконечна.
Всегда от одного способа задания плоскостей можно перейти к другому. Например, соединив между собой точки А, В и С отрезками прямых линий, можно получить плоскость, заданную треугольником (рис. 2.20 а, д).
След плоскости – это линия пересечения заданной плоскости с одной из плоскостей проекций.
Соответственно различают горизонтальный, фронтальный и профильный следы плоскости.
Задание плоскости следами дает наиболее наглядное представление о положении плоскости в пространстве.
В системе двух плоскостей проекций плоскость в общем случае имеет два следа (рис. 2.21 а, б). Точки пересечения двух следов на оси проекций называются точками схода следов. Для упрощения решения задач на практике обычно переходят от такого способа задания плоскости к заданию ее двумя пересекающимися прямыми нулевого уровня[2]: горизонталью, лежащей в горизонтальной плоскости проекций и совпадающей с горизонтальным следом плоскости , и фронталью, располагающейся во фронтальной плоскости проекций и совпадающей с фронтальным следом плоскости
(рис.2.21 а, в).
Классификация плоскостей относительно плоскостей проекций аналогична классификации прямых: плоскости относительно плоскостей проекций могут занимать общее или частное положение.
Плоскостью общего положения называется плоскость не параллельная и не перпендикулярная ни одной из плоскостей проекций.
Плоскость общего положения пересекает все плоскости проекций (рис. 2.21).[3]
Признаки и свойства плоскости общего положения:
1) Следы плоскости общего положения не параллельны и не перпендикулярны ни одной из осей проекций.
2) Любой плоский геометрический объект (отрезок или фигура), лежащий в плоскости, проецируется на любую из плоскостей проекций с искажением.
Плоскостями частного положения относительно плоскостей проекций называются плоскости параллельные или перпендикулярные им.
Плоскость, перпендикулярная одной из плоскостей проекций, называется проецирующей плоскостью.
Существует три вида проецирующих плоскостей: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая плоскости. Такие плоскости вырождаются в прямую линию (след проекций) на ту плоскость проекций, к которой они перпендикулярны.
1. Горизонтально-проецирующая плоскость – плоскость перпендикулярная горизонтальной плоскости проекций.
Признаки и свойства горизонтально-проецирующей плоскости:
1) горизонтальный след плоскости располагается наклонно к осям проекций 0x и 0y и определяет углы наклона этой плоскости к фронтальной (
) и профильной (
) плоскостям проекций;
2) горизонтальные проекции всех точек, прямых и плоских фигур, лежащих в горизонтально-проецирующей плоскости, находятся на ее горизонтальном следе , его называют следом проекций.
2. Фронтально-проецирующая плоскость –плоскость перпендикулярная фронтальной плоскости проекций.
Признаки и свойства фронтально-проецирующей плоскости:
1) фронтальный след плоскости располагается наклонно к осям проекций 0x и 0z и определяет углы наклона этой плоскости к горизонтальной (
) и профильной (
) плоскостям проекций;
2) фронтальные проекции всех точек, прямых и плоских фигур, лежащих во фронтально-проецирующей плоскости, находятся на ее фронтальном следе .
3. Профильно-проецирующая плоскость – плоскость, перпендикулярная профильной плоскости проекций.
Признаки и свойства профильно-проецирующей плоскости:
1) горизонтальный и фронтальный следы плоскости располагаются параллельно оси проекций 0x, а профильный след наклонен к осям 0y’ и 0z. Он определяет углы наклона этой плоскости к фронтальной (
) и горизонтальной (
) плоскостям проекций;
2) профильные проекции всех точек, прямых и плоских фигур, лежащих в профильно-проецирующей плоскости, находятся на ее профильном следе.
Плоскость, параллельная одной из плоскостей проекций, называется плоскостью уровня.
Все точки этой плоскости одинаково удалены от той плоскости проекций, к которой она параллельна. Любой отрезок или плоская фигура, лежащие в плоскости уровня, проецируются без искажения на параллельную ей плоскость проекций.
Существует три вида плоскостей уровня: горизонтальная, фронтальная и профильная плоскости уровня.
Плоскости уровня пересекают только две плоскости проекций, поэтому, в отличие от ранее рассмотренных плоскостей, имеют только два следа.
1. Горизонтальная плоскость уровня– плоскость, параллельная горизонтальной плоскости проекций.
Признаки и свойства горизонтальной плоскости:
1) фронтальный и профильный следы плоскости располагаются параллельно осям проекций 0x и 0y соответственно;
2) фронтальные проекции всех точек, прямых и плоских фигур, лежащих в горизонтальной плоскости, находятся на ее фронтальном следе, профильные проекции – на профильном;
3) горизонтальные проекции плоских фигур, лежащих в плоскости, равны их натуральным величинам.
2. Фронтальная плоскость – плоскость, параллельная фронтальной плоскости проекций.
Признаки и свойства горизонтальной плоскости:
1) горизонтальный и профильный следы плоскости располагаются параллельно осям проекций 0x и 0z соответственно;
2) горизонтальные проекции всех точек, прямых и плоских фигур, лежащих во фронтальной плоскости, находятся на ее горизонтальном следе, профильные проекции – на профильном;
3) фронтальные проекции плоских фигур, лежащих в плоскости, равны их натуральным величинам.
3. Профильная плоскость – плоскость, параллельная профильной плоскости проекций.
Признаки и свойства профильной плоскости:
1) фронтальный и горизонтальный следы плоскости располагаются параллельно осям проекций 0z и 0y соответственно;
2) фронтальные проекции всех точек, прямых и плоских фигур, лежащих в профильной плоскости, находятся на ее фронтальном следе, горизонтальные проекции – на горизонтальном;
3) профильные проекции плоских фигур, лежащих в плоскости, равны их натуральным величинам.
Источник
Лекция 3. Плоскость
3.1. Способы задания плоскости на ортогональных чертежах
Рисунок 3.1 – Способы задания плоскостей
Плоскость общего положения – это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.
Плоскость общего положения может иметь три следа: горизонтальный – απ1, фронтальный – απ2 и профильный – απ3, которые она образует при пересечении с известными плоскостями проекций: горизонтальной π1, фронтальной π2 и профильной π3 (Рисунок 3.2).
Рисунок 3.2 – Следы плоскости общего положения
3.2. Плоскости частного положения
Плоскость частного положения – плоскость, перпендикулярная или параллельная плоскости проекций.
Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.
Свойство проецирующей плоскости : все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости (Рисунок 3.3).
Рисунок 3.3 – Фронтально-проецирующая плоскость, которой принадлежат: точки А, В, С; линии АС, АВ, ВС; плоскость треугольника АВС
Фронтально-проецирующая плоскость – плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).
Горизонтально-проецирующая плоскость – плоскость, перпендикулярная горизонтальной плоскости проекций (Рисунок 3.4, б).
Профильно-проецирующая плоскость – плоскость, перпендикулярная профильной плоскости проекций.
Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями.
Фронтальная плоскость уровня – плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).
Горизонтальная плоскость уровня – плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).
Профильная плоскость уровня – плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).
Рисунок 3.4 – Эпюры плоскостей частного положения
3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости (Рисунок 3.5). Прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки (Рисунок 3.6).
Рисунок 3.5 – Принадлежность точки плоскости
Рисунок 3.6 – Принадлежность прямой плоскости
\left.\begin
Упражнение
Рисунок 3.7 – Решение задачи
Решение :
- ABCD – плоский четырехугольник, задающий плоскость.
- Проведём в нём диагонали AC и BD (Рисунок 3.7, б), которые являются пересекающимися прямыми, также задающими ту же плоскость.
- Согласно признаку пересекающихся прямых, построим фронтальную проекцию точки пересечения этих прямых — K: A2C2 ∩ B2D2=K2.
- Восстановим линию проекционной связи до пересечения с горизонтальной проекцией прямой BD: на проекции диагонали B1D1 строим К1.
- Через А1К1 проводим проекцию диагонали А1С1.
- Точку С1 получаем, посредством линии проекционной связи до пересечения её с горизонтальной проекцией продолженной диагонали А1К1.
3.4. Главные линии плоскости
В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 – 3.11).
Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.
Горизонталь или горизонтальная прямая уровня h (первая параллель) – это прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π1) (Рисунок 3.8, а; 3.9).
Фронталь или фронтальная прямая уровня f (вторая параллель) – это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π2) (Рисунок 3.8, б; 3.10).
Профильная прямая уровня p (третья параллель) – это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π3) (Рисунок 3.8, в; 3.11).
Интерактивная модель Горизонталь плоскости |
Рисунок 3.8 а – Горизонтальная прямая уровня в плоскости, заданной треугольником
Интерактивная модель Фронталь плоскости |
Рисунок 3.8 б – Фронтальная прямая уровня в плоскости, заданной треугольником
Интерактивная модель Профильная прямая плоскости |
Рисунок 3.8 в – Профильная прямая уровня в плоскости, заданной треугольником
Рисунок 3.9 – Горизонтальная прямая уровня в плоскости, заданной следами
Рисунок 3.10 – Фронтальная прямая уровня в плоскости, заданной следами
Рисунок 3.11 – Профильная прямая уровня в плоскости, заданной следами
3.5. Взаимное положение прямой и плоскости
Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.
3.5.1. Параллельность прямой плоскости
Признак параллельности прямой плоскости : прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости (Рисунок 3.12).
\alpha=m\cap n\\\left.\begin
Рисунок 3.12 – Параллельность прямой плоскости
3.5.2. Пересечение прямой с плоскостью
Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:
- Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
- Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
- Найти точку пересечения заданной прямой а с линией пересечения плоскостей MN.
Рисунок 3.13 – Построение точки встречи прямой с плоскостью
Упражнение
Заданы: прямая АВ общего положения, плоскость σ⊥π1. (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.
Решение :
-
- Точка К должна принадлежать прямой АВ ⇒ К1∈А1В и заданной плоскости σ ⇒ К1∈σ, следовательно, К1 находится в точке пересечения проекций А1В1 и σ1;
- Плоскость σ – горизонтально-проецирующая, следовательно, горизонтальной проекцией плоскости σ является прямая σ1 (горизонтальный след плоскости);
- Фронтальную проекцию точки К находим посредством линии проекционной связи: К2∈А2В2.
Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения
Упражнение
Заданы: плоскость σ = ΔАВС – общего положения, прямая EF (Рисунок 3.15).
Требуется построить точку пересечения прямой EF с плоскостью σ.
Рисунок 3.15 – Пересечение прямой с плоскостью
Решение:
- Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.15, а);
- Если α⊥π1, то на плоскость проекций π1 плоскость α проецируется в прямую (горизонтальный след плоскости απ1 или α1), совпадающую с E1F1;
- Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи будет рассмотрено ниже);
- Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K.
Алгоритм решения задачи (Рисунок 3.15, б): Через EF проведем вспомогательную плоскость α:
- \left.\begin
\alpha \perp \pi_1\\\alpha\in EF\\\end \right\> \Longrightarrow \alpha_1\in E_1F_1 - \alpha\cap\sigma=(1-2)\left.\begin
|\alpha_1\cap A_1C_1=1_1\longrightarrow 1_2\\|\alpha_1\cap A_1B_1=2_1\longrightarrow 2_2\\\end \right. - (1_2-2_2)\cap E_2F_2=K_2\\\left.\begin
K\in EF\\K\in (1-2)\Rightarrow K\in\sigma\\\end \right\>\Longrightarrow K=EF\cap (\sigma =\triangle ABC)
3.6. Определение видимости методом конкурирующих точек
При оценке положения данной прямой, необходимо определить – точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π1 или π2.
Точки, которые принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций.
Необходимо отдельно определить видимость на каждой плоскости проекций.
Видимость на π2 (рис. 3.15)
Выберем точки, конкурирующие на π2 – точки 3 и 4. Пусть точка 3∈ВС∈σ, точка 4∈EF.
Чтобы определить видимость точек на плоскости проекций π2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π2.
Направление взгляда на π2 показано стрелкой.
По горизонтальным проекциям точек 3 и 4, при взгляде на π2, видно, что точка 41 располагается ближе к наблюдателю, чем 31.
41∈E1F1 ⇒ 4∈EF ⇒ на π2 будет видима точка 4, лежащая на прямой EF, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K – точки пересечения прямой с плоскостью σ.
Видимость на π1.
Для определения видимости выберем точки, конкурирующие на π1 – точки 2 и 5.
Чтобы определить видимость точек на плоскости проекций π1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π1.
Направление взгляда на π1 показано стрелкой.
По фронтальным проекциям точек 2 и 5, при взгляде на π1, видно, что точка 22 располагается ближе к наблюдателю, чем 52.
22∈А2В2 ⇒ 2∈АВ ⇒ на π1 будет видима точка 2, лежащая на прямой АВ, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K – точки пересечения прямой с плоскостью σ.
Видимой из двух конкурирующих точек будет та, у которой координата «Z» или(и) «Y» больше.
3.7. Перпендикулярность прямой плоскости
Признак перпендикулярности прямой плоскости : прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.
Рисунок 3.16 – Задание прямой, перпендикулярной плоскости
Теорема. Если прямая перпендикулярна плоскости, то на эпюре: горизонтальная проекции прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна фронтальной проекции фронтали (Рисунок 3.16, б)
Теорема доказывается через теорему о проецировании прямого угла в частном случае.
Если плоскость задана следами, то проекции прямой перпендикулярной плоскости перпендикулярны соответствующим следам плоскости (Рисунок 3.16, а).
Пусть прямая p перпендикулярна плоскости σ=ΔАВС и проходит через точку K.
3.8. Взаимное положение двух плоскостей
3.8.1. Параллельность плоскостей
Две плоскости могут быть параллельными и пересекающимися между собой.
Признак параллельности двух плоскостей : две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Упражнение
Задана плоскость общего положения α=ΔАВС и точка F∉α (Рисунок 3.17).
Через точку F провести плоскость β, параллельную плоскости α.
Рисунок 3.17 – Построение плоскости, параллельной заданной
Решение : В качестве пересекающихся прямых плоскости α возьмем, например, стороны треугольника АВ и ВС.
- Через точку F проводим прямую m, параллельную, например, АВ.
- Через точку F, или же через любую точку, принадлежащую m, проводим прямую n, параллельную, например, ВС, причём m∩n=F.
- β = m∩n и β//α по определению.
Интерактивная модель Параллельность двух плоскостей |
3.8.2. Пересечение плоскостей
Результатом пересечения 2-х плоскостей является прямая. Любая прямая на плоскости или в пространстве может быть однозначно задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.
Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.
Упражнение
Рисунок 3.18 – Пересечение плоскостей общего положения, заданных следами
Порядок построения линии пересечения плоскостей:
- Найти точку пересечения горизонтальных следов — это точка М (её проекции М1 и М2, при этом М1=М, т.к. М – точка частного положения, принадлежащая плоскости π1).
- Найти точку пересечения фронтальных следов — это точка N (её проекции N1 и N2, при этом N2=N, т.к. N – точка частного положения, принадлежащая плоскости π2).
- Построить линию пересечения плоскостей, соединив одноименные проекции полученных точек: М1N1 и М2N2.
МN – линия пересечения плоскостей.
Упражнение
Решение:
Так как плоскость α пересекает стороны АВ и АС треугольника АВС, то точки пересечения K и L этих сторон с плоскостью α являются общими для обеих заданных плоскостей, что позволит, соединив их, найти искомую линию пересечения.
Точки могут быть найдены как точки пересечения прямых с проецирующей плоскостью: находим горизонтальные проекции точек K и L, то есть K1 и L1 , на пересечении горизонтального следа (α1) заданной плоскости α с горизонтальными проекциями сторон ΔАВС: А1В1 и A1C1. После чего посредством линий проекционной связи находим фронтальные проекции этих точек K2 и L2 на фронтальных проекциях прямых АВ и АС. Соединим одноимённые проекции: K1 и L1; K2 и L2. Линия пересечения заданных плоскостей построена.
Алгоритм решения задачи :
\left.\begin
KL – линия пересечения ΔАВС и σ (α∩σ = KL).
Рисунок 3.19 – Пересечение плоскостей общего и частного положения
Упражнение
Рисунок 3.20 – Пересечение двух плоскостей общего положения (общий случай)
Алгоритм решения задачи :
\left.\begin
Упражнение
Заданы плоскости α = ΔАВС и β = a//b. Построить линию пересечения заданных плоскостей (Рисунок 3.21).
Рисунок 3.21 Решение задачи на пересечение плоскостей
Решение: Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ⊥π2, заключив прямую a во вспомогательную плоскость σ (σ∈a). Плоскость σ пересекает плоскость α по прямой (1-2), а σ∩β=а. Следовательно (1-2)∩а=K. Точка К принадлежит обеим плоскостям α и β. Следовательно, точка K, является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β. Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ⊥π2 (τ∈b). Соединив точки K и L, получим прямую пересечения плоскостей α и β.
3.8.3. Взаимно перпендикулярные плоскости
Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.
Упражнение
Задана плоскость σ⊥π2 и прямая общего положения – DE (Рисунок 3.22)
Требуется построить через DE плоскость τ⊥σ.
Рисунок 3.22 – Построение плоскости, перпендикулярной к заданной плоскости
По теореме о проецировании прямого угла C1D1 должна быть параллельна оси проекций. Пересекающиеся прямые CD∩DE задают плоскость τ. Итак, τ⊥σ. Аналогичные рассуждения, в случае плоскости общего положения.
Упражнение
Рисунок 3.23 – Построение плоскости, перпендикулярной к заданной ΔАВС
3.9. Задачи для самостоятельного решения
1. Задана плоскость α = m//n (Рисунок 3.24). Известно, что K∈α.
Постройте фронтальную проекцию точки К.
2. Постройте следы прямой, заданной отрезком CB, и определите квадранты, через которые она проходит (Рисунок 3.25).
3. Постройте проекции квадрата, принадлежащего плоскости α⊥π2, если его диагональ MN //π2 (Рисунок 3.26).
4. Построить прямоугольник ABCD с большей стороной ВС на прямой m, исходя из условия, что отношение его сторон равно 2 (Рисунок 3.27).
5. Задана плоскость α=a//b (Рисунок 3.28). Построить плоскость β параллельную плоскости α и удаленную от нее на расстоянии 20 мм.
6. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D плоскость β⊥α и β⊥π1.
7. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D прямую DE//α и DE//π1.
Источник