- VMath
- Инструменты сайта
- Основное
- Навигация
- Информация
- Действия
- Содержание
- Линейное пространство
- Определения
- Примеры линейных пространств
- Изоморфизм
- Линейная зависимость, базис, координаты
- Критерии линейной зависимости
- Относительный базис
- Сумма и пересечение линейных подпространств
- Прямая сумма линейных подпространств
- Линейные многообразия
VMath
Инструменты сайта
Основное
Навигация
Информация
Действия
Содержание
Благодарю Ю.А.Смолькина за обнаружение 07.08.19 ошибки на настоящей странице и информирование о ней.
Линейное пространство
Определения
Пусть дано множество $ \mathbb V_<>=\left\ < X,Y,Z,U,\dots \right\>$ элементов произвольной природы. Пусть для элементов этого множества определены две операции: сложения $ X+Y_<> $ и умножения на любое вещественное число $ \alpha_<> $: $ \alpha \cdot X_<> $, и множество $ \mathbb V_<> $ замкнуто относительно этих операций: $ X+Y \in \mathbb V ,\ \alpha \cdot X \in \mathbb V_<> $. Пусть эти операции подчиняются аксиомам:
1. $ X+Y=Y+X_<> $ для $ \ < X,\, Y\>\subset \mathbb V_<> $;
2. $ (X+Y)+Z_<>=X+(Y+Z) $ для $ \ < X,\, Y,\, Z \>\subset \mathbb V_<> $;
3. в $ \mathbb V_<> $ cуществует нулевой вектор $ \mathbb O_<> $ со свойством $ X+ \mathbb O =X_<> $ для $ \forall X\in \mathbb V_<> $;
4. для каждого $ X\in \mathbb V_<> $ существует обратный вектор $ X^<\prime>\in \mathbb V_<> $ со свойством $ X+X^<\prime>=\mathbb O_<> $;
5. $ 1\cdot X=X_<> $ для $ \forall X\in \mathbb V_<> $;
6. $ \lambda \left(\mu X \right)_<>= \left(\lambda \mu \right)X $ для $ \forall X\in \mathbb V_<> $, $ \ <\lambda ,\, \mu \>\subset \mathbb R_<> $ ;
7. $ (\lambda + \mu)X=\lambda X + \mu X_<> $ для $ \forall X\in \mathbb V_<> $, $ \<\lambda ,\, \mu \>\subset \mathbb R_<> $ ;
8. $ \lambda (X + Y) =\lambda X_<> + \lambda Y $ для $ \ < X,\, Y\>\subset \mathbb V_<> , \lambda \in \mathbb R $.
Тогда такое множество $ \mathbb V_<> $ называется линейным (векторным) пространством, его элементы называются векторами, и — чтобы подчеркнуть их отличие от чисел из $ \mathbb R_<> $ — последние называются скалярами 1) . Пространство, состоящее из одного только нулевого вектора, называется тривиальным .
Элементарно доказывается единственность нулевого вектора, и единственность вектора, обратного вектору $ X\in \mathbb V_<> $: $ X^<\prime>=-1\cdot X_<> $, его привычно обозначают $ — X_<> $.
Подмножество $ \mathbb V_ <1>$ линейного пространства $ \mathbb V_<> $, само являющееся линейным пространством (т.е. $ \mathbb V_ <1>$ замкнуто относительно сложения векторов и умножения на произвольный скаляр), называется линейным подпространством пространства $ \mathbb V_<> $. Тривиальными подпространствами линейного пространства $ \mathbb V_<> $ называются само $ \mathbb V_<> $ и пространство, состоящее из одного нулевого вектора $ \mathbb O_<> $.
Примеры линейных пространств
Пример 1. Пространство $ \mathbb R^ <3>$ упорядоченных троек вещественных чисел $ (a_1,a_2,a_<3>) $ с операциями, определяемыми равенствами:
$$ (a_1,a_2,a_3)+(b_1,b_2,b_3)= (a_1+b_1,a_2+b_2,a_3+b_3),\ \alpha (a_1,a_2,a_3) = ( \alpha a_1, \alpha a_2, \alpha a_3 ) \ . $$ Геометрическая интерпретация очевидна: вектор в пространстве, «привязанный» к началу координат, может быть задан координатами своего конца $ (a_1,a_2,a_<3>) $. На рисунке показано и типичное подпространство пространства $ \mathbb R^ <3>$: плоскость, проходящая через начало координат. Точнее говоря, элементами $ \mathbb V_1 $ являются векторы, имеющие начало в начале координат и концы — в точках плоскости. Замкнутость такого множества относительно сложения векторов и их растяжения 2) очевидна.
Пример 2. Основываясь на том же примере, можно дать и иную интерпретацию векторного пространства $ \mathbb V_1 $ (заложенную, кстати, уже в самом происхождении слова «вектор» 3) ) — оно определяет набор «сдвигов» точек пространства $ \mathbb R^ <3>$. Эти сдвиги — или параллельные переносы любой пространственной фигуры — выбираются параллельными плоскости $ \mathbb V_1 $.
Пример 3. Естественным обобщением $ \mathbb R^ <3>$ служит пространство $ \mathbb R_<>^
$$ \left\<\begin
Почему множество решений системы неоднородных уравнений не образует линейного подпространства?
Пример 4. Обобщая далее, можем рассмотреть пространство «бесконечных» строк или последовательностей $ (a_1,\dots,a_n, \dots ) $, обычно являющееся объектом математического анализа — при рассмотрении последовательностей и рядов. Подпространство этого пространства образуют, например, линейные рекуррентные последовательности $ \
Можно рассматривать строки (последовательности) «бесконечные в обе стороны» $ \< \dots,a_<-2>,a_<-1>,a_0,a_1,a_2,\dots \> $ — они используются в ТЕОРИИ СИГНАЛОВ.
Пример 5. Множество $ m\times n_<> $-матриц с вещественными элементами с операциями сложения матриц и умножения на вещественные числа образует линейное пространство. Будем обозначать это пространство $ \mathbb R^
В пространстве квадратных матриц фиксированного порядка каждое из следующих подмножеств составляет линейное подпространство: симметричных, кососимметричных, верхнетреугольных, нижнетреугольных и диагональных матриц.
Пример 6. Множество полиномов одной переменной $ x_<> $ степени в точности равной $ n_<> $ с коэффициентами из $ \mathbb A_<> $ (где $ \mathbb A_<> $ — любое из множеств $ \mathbb Z, \mathbb Q, \mathbb R_<> $ или $ \mathbb C_<> $) с обычными операциями сложения полиномов и умножения на число из $ \mathbb A_<> $ не образует линейного пространства. Почему? — Потому что оно не является замкнутым относительно сложения: сумма полиномов $ f(x)=x^n -x+1 $ и $ g(x)=-x^n+x^
Пример 7. Обобщением предыдущего случая будет пространство полиномов нескольких переменных $ x_1,\dots, x_ <\ell>$ степени не выше $ n_<> $ с коэффициентами из $ \mathbb A_<> $. Например, множество линейных полиномов $$ \left\< a_1x_1+\dots+a_<\ell>x_<\ell>+b \big| (a_1,\dots,a_<\ell>,b) \in \mathbb A^ <\ell+1>\right\> $$ образует линейное пространство. Множество однородных полиномов (форм) степени $ n_<> $ (с присоединением к этому множеству тождественно нулевого полинома) — также линейное пространство.
Изоморфизм
Пусть имеются два линейных пространства разной природы: $ \mathbb V_<> $ с операцией $ +_<> $ и $ \mathbb W_<> $ с операцией $ \boxplus_<> $. Может оказаться так, что эти пространства «очень похожи», и свойства одного получаются простым «переводом» свойств другого.
Говорят, что пространства $ \mathbb V_<> $ и $ \mathbb W_<> $ изоморфны если между множествами их элементов можно установить такое взаимно-однозначное соответствие, что если $ X_<> \leftrightarrow X^ <\prime>$ и $ Y_<> \leftrightarrow Y^ <\prime>$ то $ X+Y \leftrightarrow X_<>^ <\prime>\boxplus Y^ <\prime>$ и $ \lambda X_<> \leftrightarrow \lambda X^ <\prime>$.
При изоморфизме пространств $ \mathbb V_<> $ и $ \mathbb W_<> $ нулевому вектору одного пространства будет соответствовать нулевой вектор другого пространства.
Пример. Пространство $ \mathbb R^
Пример. Пространство $ \mathbb R^
Пример. Пространство квадратичных форм от $ n_<> $ переменных изоморфно пространству симметричных матриц $ n_<> $-го порядка. Изоморфизм устанавливается соответствием, которое мы проиллюстрируем для случая $ n=3_<> $:
$$ a_<11>x_1^2+a_<12>x_1x_2+a_<13>x_1x_3+a_<22>x_2^2+a_<23>x_2x_3+a_<33>x_3^2 \leftrightarrow \left( \begin
Линейная зависимость, базис, координаты
Линейной комбинацией системы векторов $ \
Множество всевозможных линейных комбинаций системы векторов $ \
Теорема 1. Линейная оболочка векторов $ X_1,\dots,X_
Пример. В пространстве $ \mathbb P_
Система векторов $ \< X_<1>,\dots,X_m \> $ называется линейно зависимой (л.з.) если существуют числа $ \alpha_<1>,\dots,\alpha_m $, такие что хотя бы одно из них отлично от нуля и $$ \alpha_1X_1+\dots+\alpha_mX_m=\mathbb O $$ Если же это равенство возможно только при $ \alpha_<1>=0,\dots,\alpha_m=0 $, то система векторов называется линейно независимой (л.н.з.).
Пример. Для полиномов нескольких переменных свойство линейной зависимости является частным проявлением более общего свойства функциональной зависимости. Так, однородные полиномы (формы)
$$ f_1=(x_1+x_2+x_3)^2,\quad f_2=x_1x_2+x_1x_3+x_2x_3,\quad f_3=x_1^2+x_2^2+x_3^2 $$ являются линейно зависимыми, поскольку $$ f_1-2\,f_2-f_3 \equiv 0 \ . $$ Полиномы $$ \tilde f_1=x_1+x_2+x_3,\quad f_2=x_1x_2+x_1x_3+x_2x_3,\quad f_3=x_1^2+x_2^2+x_3^2 $$ не являются линейно зависимыми, но являются функционально зависимыми, поскольку $$ \tilde f_1^2-2\,f_2-f_3 \equiv 0 \ . $$ ♦
Теорема 2. а) Если система содержит хотя бы один нулевой вектор, то она л.з.
б) Если система л.н.з., то и любая ее подсистема л.н.з.
в) При $ m>1 $ система $ \
Теорема 3. Если каждый из векторов системы $ \ < X_1,\dots,X_
Две системы векторов называются эквивалентными если каждый вектор одной системы линейно выражается через векторы другой и обратно.
Теорема 4. Системы векторов
$$ \ < X_1,\dots,X_
Теорема 5. Если каждая из двух эквивалентных систем
$$ \ < X_1,\dots,X_
Линейно независимая система векторов $ \
При этом не подразумевается конечность системы, т.е. суммирование может распространяться на бесконечное число слагаемых. Так, например, пространство бесконечных строк (или последовательностей) $ \left[a_<1>,a_2,\dots\, \right] $ имеет бесконечный базис, состоящий из векторов $$ [\underbrace<0,\dots,0,1>_j,0,\dots \, ] \quad npu \ j \in \mathbb N \ . $$
В случае, когда базис пространства $ \mathbb V_<> $ конечен, пространство $ \mathbb V_<> $ называется конечномерным, а число векторов базиса тогда называется размерностью пространства $ \mathbb V_<> $ и обозначается 5) : $ \dim \mathbb V_<> $. Также полагают, что размерность тривиального пространства, состоящего из одного только нулевого вектора, равна нулю: $ \dim \ <\mathbb O_<>\>= 0 $.
Пример. Линейное пространство $ m\times n_<> $ матриц имеет размерность $ mn_<> $. Так, для случая $ m_<>=3 ,n=2 $ в качестве базиса можно выбрать следующий набор матриц
$$ \left( \begin
Найти размерности подпространства симметричных и подпространства кососимметричных матриц порядка $ n_<> $.
Пример [1]. Замечательный пример трехмерного линейного пространства дает нам совокупность всех цветов. Под суммой двух цветов будем понимать цвет, образованный их смешением
под умножением цвета на положительное число $ k_<> $ — увеличение в $ k_<> $ раз яркости цвета
Анимация ☞ ЗДЕСЬ (1500 K, gif)
под умножением на $ (-1) $ — взятие дополнительного цвета. При этом оказывается, что совокупность всех цветов выражается линейно через три цвета: красный, зеленый и синий, т.е. образует трехмерное линейное пространство. (Точнее, некоторое тело в трехмерном пространстве, поскольку яркости цветов ограничены верхним порогом раздражения.) Исследование этого трехмерного тела всех цветов является важным орудием цветоведения. ♦
Если $ \dim \mathbb V=d_<> $ и вектора $ X_1,\dots,X_
Теорема 6. Если $ \dim \mathbb V=d>0 $, то любая система из $ d_<> $ линейно независимых векторов пространства образует базис этого пространства.
Доказательство. Пусть $ \
Теорема 7. Любой вектор $ X \in \mathbb V_<> $ может быть разложен по фиксированному базису пространства единственным образом.
Очевидно, $ \dim \mathbb R^
Имеются два способа задания линейных подпространств в $ \mathbb R^
Пример. Найти базис подпространства
Решение. Ищем $$ \operatorname
Ответ. Базис составляют, например, первая, вторая и четвертая строки.
Другим способом задания линейного подпространства в $ \mathbb R^
Теорема 8. Множество решений системы однородных уравнений $ AX=\mathbb O_<> $ образует линейное подпространство пространства $ \mathbb R^
Пример. В пространстве $ \mathbb P_
$$ f(x)=a_0+a_1x+a_2x^2+\dots+a_nx^n $$ будут его коэффициенты. Можно выбрать и другой базис, например, $ \ <1, x-c,(x-c)^2,\dots,(x-c)^n \>$ при произвольном числе $ c_<> $. Координатами полинома в этом базисе будут теперь коэффициенты формулы Тейлора: $$ f(x) \equiv f(c)+ \frac
Найти координаты полинома
Теорема 9. Любое векторное пространство $ \mathbb V_<> $ размерности $ d_<> $ изоморфно $ \mathbb R^
Доказательство. Изоморфизм можно установить следующим соответствием. Если $ \
Критерии линейной зависимости
Теорема . Строки
$$ \<(a_<11>,\dots,a_<1n>),\dots, (a_
Теорема . Строки
$$ \<(a_<11>,\dots,a_<1n>),\dots, (a_
$$ \<(a_<11>,\dots,a_<1n>),\dots, (a_
Теорема . Аналитические на интервале $ ]a,b[ $ функции $ u_1(x),\dots,u_n(x) $ линейно зависимы на $ ]a,b[ $ тогда и только тогда, когда их вронскиан
Относительный базис
В настоящем пункте $ \mathbb V_1 $ обозначает линейное подпространство пространства $ \mathbb V_<> $, отличное от тривиального; обозначаем $ d_1=\dim \mathbb V_1 $.
Теорема. Произвольный базис подпространства $ \mathbb V_1 $ можно дополнить до базиса пространства $ \mathbb V_<> $.
Доказательство. Пусть $ \
Говорят, что система векторов $ \
Теорема. Обозначим $ \
Пример. Найти все значения параметра $ <\color
Решение. Базисом подпространства $ \mathbb V_1 $ является произвольная ФСР заданной системы однородных уравнений, например $ \
Ответ. $ <\color
Говорят, что система векторов $ \
Теорема. Обозначим $ \ < Y_1,\dots,Y_
Доказательство. Действительно, любой вектор $ X\in \mathbb V_<> $ выражается через векторы $ X_1,\dots,X_k,Y_1,\dots,Y_
Базис $ \mathbb V_<> $ строится дополнением базиса $ \mathbb V_1 $ векторами $ X_1,\dots,X_k $ линейно независимыми относительно $ \mathbb V_1 $. Поэтому $$<.>_<> \mbox <число векторов относительного базиса >\ = \dim \mathbb V — \dim \mathbb V_1 \ .$$
Это число называется коразмерностью 6) подпространства $ \mathbb V_1 $ в пространстве $ \mathbb V $.
Сумма и пересечение линейных подпространств
Пусть $ \mathbb V_1 $ и $ \mathbb V_2 $ — подпространства линейного пространства $ \mathbb V_<> $. Множество $$ \mathbb V_1+ \mathbb V_2 = \left\
Понятие пересечения линейных подпространств совпадает с понятием пересечения их как множеств.
Теорема. $ \mathbb V_1+ \mathbb V_2 $ и $ \mathbb V_1 \cap \mathbb V_2 $ являются подпространствами линейного пространства $ \mathbb V_<> $.
Докажите, что $ \mathbb V_1+ \mathbb V_2 $ — это подпространство минимальной размерности, содержащее как $ \mathbb V_1 $, так и $ \mathbb V_2 $.
Теорема. Имеет место формула:
$$ \dim \, \mathbb V_1 + \dim \, \mathbb V_2=\dim \, (\mathbb V_1 \cap \mathbb V_2) + \dim \, (\mathbb V_1 + \mathbb V_2) \ . $$
Доказательство ☞ ЗДЕСЬ.
Можно ли обобщить этот результат на случай трех (и более подпространств)? Cправедлив ли, к примеру, аналог формулы включений-исключений в следующем виде:
$$\dim \, \mathbb V_1 + \dim \, \mathbb V_2 + \dim \, \mathbb V_3 — $$ $$ -\left\ <\dim \, (\mathbb V_1 \cap \mathbb V_2) + \dim \, (\mathbb V_1 \cap \mathbb V_3) + \dim \, (\mathbb V_2 \cap \mathbb V_3) \right\>+ $$ $$+ \dim \, (\mathbb V_1 \cap \mathbb V_2 \cap \mathbb V_3) =\dim \, (\mathbb V_1 + \mathbb V_2 + \mathbb V_3) \ ?$$
Теорема. Имеет место формула:
Пример. Найти базис суммы и размерность пересечения
$$\mathbb V_1=<\mathcal L>\left( \left[ \begin
Решение. Действуя согласно предыдущей теореме, составляем матрицу из всех векторов $$ \left( \begin
Ответ. Базис $ \mathbb V_1 + \mathbb V_2 $ составляют векторы $ X_1,X_2,X_3 $; $ \dim \, (\mathbb V_1 \cap \mathbb V_2) = 3+2 — 3 =2 $.
Алгоритм нахождения базиса $ <\mathcal L>(X_1,\dots,X_m) \cap <\mathcal L>(Y_1,\dots,Y_<\ell>) $ проиллюстрируем на примере.
Пример. Найти базис $ \mathbb V_1 \cap \mathbb V_2 $ при
$$ \begin
Решение. 1. Сначала найдем базисы каждого из подпространств: $$\dim \mathbb V_1=2, \ \mathbb V_1=\mathcal L(X_1, X_2) \ ; \ \dim \mathbb V_2=3,\ \mathbb V_2=\mathcal L(Y_1, Y_2, Y_3) \ . $$
2. Произвольный вектор $ Z\in \mathbb R^5 $, принадлежащий $ \mathbb V_1 \cap \mathbb V_2 $, должен раскладываться по базису каждого из подпространств: $$Z=\alpha_1 X_1 + \alpha_2 X_2= \beta_1 Y_1 + \beta_2 Y_2 + \beta_3 Y_3 \ .$$ Для определения неизвестных значений координат составляем систему уравнений $$ \begin
3. Получившиеся значения координат позволяют выразить базис пересечения — либо через базис подпространства $ \mathbb V_1 $ (если использовать полученные значения для $ \alpha_1,\alpha_2 $), либо через базис подпространства $ \mathbb V_2 $ (если использовать $ \beta_1,\beta_2, \beta_3 $). Например, $$ Z_1=-1/3 X_1 + 1/3 X_2 = [0,1,0,1,0]^<^<\top>>,\ $$ $$ Z_2=1/3 X_1 + 2/3 X_2 = [1,1,1,1,1]^<^<\top>> \ . $$
Найти базисы суммы и пересечения подпространств
Решение ☞ ЗДЕСЬ.
Прямая сумма линейных подпространств
Пусть $ \mathbb V_1 $ и $ \mathbb V_2 $ — подпространства линейного пространства $ \mathbb V_<> $. Говорят, что $ \mathbb V_<> $ раскладывается в прямую сумму подпространств $ \mathbb V_1 $ и $ \mathbb V_2 $ если любой вектор $ X\in \mathbb V_<> $ может быть представлен в виде $ X=X_1+X_2 $, где $ X_1\in \mathbb V_1,X_2\in \mathbb V_2 $ и такое представление единственно. Этот факт записывают: $ \mathbb V= \mathbb V_1 \oplus \mathbb V_2 $. Вектор $ X_ <1>$ называется проекцией вектора $ X_<> $ на подпространство $ \mathbb V_1 $ параллельно подпространству $ \mathbb V_ <2>$.
Пример. Линейное пространство квадратных матриц порядка $ n_<> $ раскладывается в прямую сумму подпространств: подпространства симметричных матриц и подпространства кососимметричных матриц. В самом деле, для матрицы $ A_
$$A=\frac<1> <2>\left(A+A^ <^\top>\right) + \frac<1> <2>\left(A-A^ <^\top>\right) $$ и в правой части первая скобка дает симметричную матрицу, а вторая — кососимметричную. Покажите, что не существует иного разложения матрицы $ A_<> $ в сумму симметричной и кососимметричной.
Теорема. Пусть $ \mathbb V=\mathbb V_1 + \mathbb V_2 $. Эта сумма будет прямой тогда и только тогда, когда подпространства $ \mathbb V_1 $ и $ \mathbb V_2 $ имеют тривиальное пересечение:
$$\mathbb V_1 \cap \mathbb V_2=\ <\mathbb O \>\ .$$
Доказательство. Необходимость. Пусть сумма $ \mathbb V_1 + \mathbb V_2 $ — прямая, но существует вектор $ X\ne \mathbb O $, принадлежащий $ \mathbb V_1 \cap \mathbb V_2 $. Но тогда и вектор $ (-X) $ принадлежит $ \mathbb V_1 \cap \mathbb V_2 $. Для нулевого вектора $ \mathbb O $ получаем два представления в виде суммы проекций на подпространства: $$ \mathbb O = \mathbb O + \mathbb O = X+ (-X) \, . $$ Это противоречит понятию прямой суммы.
Достаточность. Если $ \mathbb V_1 \cap \mathbb V_2=\ <\mathbb O \>$, но существует вектор $ X \in \mathbb V_1 + \mathbb V_2 $, имеющий два различных разложения в сумму проекций $$ X=X_1+X_2 =Y_1+ Y_2 \quad npu \quad \
Сумма $ \mathbb V=\mathbb V_1 + \mathbb V_2 $ будет прямой тогда и только тогда, когда базис $ \mathbb V_<> $ может быть получен объединением базисов $ \mathbb V_
Пример [2]. Доказать, что сумма подпространств
$$\mathbb V_1=<\mathcal L>\left( \left[ \begin
Решение. Базисы $ \mathbb V_1 $ и $ \mathbb V_2 $ составляют соответственно системы $ \
Линейные многообразия
Пусть $ \mathbb V_1 $ — линейное подпространство пространства $ \mathbb V_<> $, а $ X_ <0>$ — произвольный фиксированный вектор из $ \mathbb V_<> $. Множество $$ \mathbb M = X_0+ \mathbb V_1 = \left\
$ \
а $ \mathfrak r= \operatorname
Получаем, следовательно, $ (n-<\mathfrak r>) $-мерную плоскость в $ \mathbb R^n $, a в случае $ (n-<\mathfrak r>)=1 $ — прямую $$\mathbb M=X_0+tX_1 \quad npu \ t \in \mathbb R \ ; $$ в последнем случае вектор $ X_ <1>$ называют направляющим вектором этой прямой.
Некоторые задачи на линейные многообразия ☞ ЗДЕСЬ.
Источник