- Способы задания графов.
- MT1100: Дискретная математика
- Теория графов. Основные понятия и виды графов
- Теория графов
- Основные понятия теории графов
- Путь и цепь в графе
- Визуализация графовых моделей
- Виды графов
- Ориентированные и неориентированные графы
- Графы с петлями, смешанные графы, пустые графы, мультиграфы, обыкновенные графы, полные графы
- Двудольный граф
- Эйлеров граф
- Регулярный граф
- Гамильтонов граф
- Взвешенный граф
- Графы-деревья
- Определение дерева
- Теоремы дерева и их доказательства
- Теория графов и современные прикладные задачи
- Графы и задача о потоках
- Графы и сетевое планирование
Способы задания графов.
Рассмотрим три способа задания графов: графический, аналитический и матричный.
1) Графический способ.
Вершины изображают точками на плоскости, а ребра – линиями, соединяющими соответствующие точки. Для изображения дуги используется линия со стрелкой, указывающей направление от начала к концу дуги.
На рисунке 12 изображен смешанный граф с вершинами v1, v2,¼, v6, ребрами e1, e2, e3, e5 и дугой e4. Смежные вершины v1, v2, инциденты ребру e1. Вершины v1, v3, инциденты параллельным ребрам e2 и e3. Вершине v4 инциденты петля e5 и дуга e4, причем v4 является началом дуги e4, а v5 – концом этой дуги. Степень вершины v1 равна 3, вершины v2 – 1, вершины v3 – 2, вершины v4 – 3, вершины v5 – 1, вершины v6 – 0. Таким образом, вершины v2 и v5 – висячие, а вершина v6 – изолированная. В случае дуги e4 точнее было бы говорить о полустепенях исхода и захода вершин v4 и v5, а именно: полустепень исхода вершины v4 равна 3, вершины v5 – 0, полустепень захода вершины v4 равна 2, вершины v5 – 1.
2) Аналитический способ.
3) Матричный способ.
Имеется несколько вариантов задать граф матрицей. Наиболее употребимыми являются матрица инциденций и матрица смежности.
а) Матрица инциденций – это прямоугольная матрица, число строк которой равно числу вершин, а число столбцов – числу дуг (ребер) графа. Элементы этой матрицы определяются следующим образом:
Таким образом, для графа на рисунке 12 матрица инциденций такова:
e1 | e2 | e3 | e4 | e5 |
v1 | ||||
v2 | ||||
I= | v3 | |||
v4 | ||||
v5 | -1 | |||
v6 |
По этой матрице легко судить о наличии в графе параллельных ребер (два одинаковых столбца), петли (одна единица в столбце), дуги (значения разных знаков в столбце), изолированной вершины (нулевая строка), висячих вершин (одно ненулевое значение в строке).
б) Матрица смежности вершин – это квадратная матрица, размер которой определяется числом вершин в графе. Элементы этой матрицы определяются так: . Если в графе имеются параллельные ребра, то соответствующий элемент матрицы смежности полагают равным числу этих ребер. Так матрица смежности для графа на рисунке 12 такова:
v1 | v2 | v3 | v4 | v5 | v6 |
v1 | |||||
v2 | |||||
S= | v3 | ||||
v4 | |||||
v5 | |||||
v6 |
По виду этой матрицы также несложно судить о наличии в графе кратных ребер, дуг, петель, висячих и изолированных вершин.
Дата добавления: 2015-10-19 ; просмотров: 17483 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
MT1100: Дискретная математика
Помимо геометрического (графического) и аналитического способов задания графов существует еще, как минимум, три эквивалентых им способа.
Матрицей смежности для графа %%G = (V, E)%% называется квадратная матрица %%A = (a_
$$ A = \begin
Матрица смежности для примера из «Основных понятий»
Списком ребер графа называется таблица, состоящая из двух столбцов, в которой на пересечении %%i%%-й строки и первого (левого) столбца записывается ребро %%e_i%%, а на пересечении %%i%% -й строки и второго (правого) столбца записываются вершины, инцидентные ребру %%e_i%%.
Для того, чтобы список ребер однозначно задавал граф, необходимо помимо списка ребер указать множество всех изолированных вершин этого графа.
1 | %%B, C%% |
2 | %%A, C%% |
3 | %%B, F%% |
4 | %%A, F%% |
5 | %%A, F%% |
6 | %%A, D%% |
7 | %%D, F%% |
8 | %%D, E%% |
9 | %%E, F%% |
10 | %%B, E%% |
11 | %%E, E%% |
Список ребер для примера из «Основных понятий»
Матрицей инцидентности для графа %%G = (V, E)%% называется матрица %%B = (b_
Для неориентированного графа %%b_
У матрицы инцидентности есть пара особенностей:
- в каждой строке должны стоять две единицы, а все остальные символы — нули;
- она не используется для графов с петлями.
$$ B = \begin
Матрица инцидентности для примера из «Основных понятий» с учетом удаления петли у %%E%%
Источник
Теория графов. Основные понятия и виды графов
О чем эта статья:
Теория графов
В переводе с греческого граф — «пишу», «описываю». В современном мире граф описывает отношения. И наоборот: любое отношение можно описать в виде графа.
Теория графов — обширный раздел дискретной математики, в котором системно изучают свойства графов.
Теория графов широко применяется в решении экономических и управленческих задач, в программировании, химии, конструировании и изучении электрических цепей, коммуникации, психологии, социологии, лингвистике и в других областях.
Для чего строят графы: чтобы отобразить отношения на множествах. По сути, графы помогают визуально представить всяческие сложные взаимодействия: аэропорты и рейсы между ними, разные отделы в компании, молекулы в веществе.
Давайте на примере.
Пусть множество A =
На множестве A зададим отношение знакомства между людьми из этого множества. Строим граф из точек и связок. Связки будут связывать пары людей, знакомых между собой.
Число знакомых у одних людей может отличаться от числа знакомых у других людей, некоторые могут вовсе не быть знакомы (такие элементы будут точками, не соединёнными ни с какой другой). Так получился граф:
В данном случае точки — это вершины графа, а связки — рёбра графа.
Теория графов не учитывает конкретную природу множеств A и B. Существует большое количество разных задач, при решении которых можно временно забыть о содержании множеств и их элементов. Эта специфика не отражается на ходе решения задачи.
Например, вопрос в задаче стоит так: можно ли из точки A добраться до точки E, если двигаться только по соединяющим точки линиям. Когда задача решена, мы получаем решение, верное для любого содержания, которое можно смоделировать в виде графа.
Не удивительно, что теория графов — один из самых востребованных инструментов при создании искусственного интеллекта: ведь искусственный интеллект может обсудить с человеком вопросы отношений, географии или музыки, решения различных задач.
Графом называется система объектов произвольной природы (вершин) и связок (ребер), соединяющих некоторые пары этих объектов.
Пусть V — (непустое) множество вершин, элементы v ∈ V — вершины. Граф G = G(V) с множеством вершин V есть некоторое семейство пар вида: e = (a, b), где a, b ∈ V, указывающих, какие вершины остаются соединёнными. Каждая пара e = (a, b) — ребро графа. Множество U — множество ребер e графа. Вершины a и b — концевые точки ребра e.
Широкое применение теории графов в компьютерных науках и информационных технологиях можно объяснить понятием графа как структуры данных. В компьютерных науках и информационных технологиях граф можно описать, как нелинейную структуру данных.
Линейные структуры данных особенны тем, что связывают элементы отношениями по типу «простого соседства». Линейными структурами данных можно назвать массивы, таблицы, списки, очереди, стеки, строки. В нелинейных структурах данных элементы располагаются на различных уровнях иерархии и подразделяются на три вида: исходные, порожденные и подобные.
Основные понятия теории графов
Граф — это геометрическая фигура, которая состоит из точек и линий, которые их соединяют. Точки называют вершинами графа, а линии — ребрами.
- Два ребра называются смежными, если у них есть общая вершина.
- Два ребра называются кратными, если они соединяют одну и ту же пару вершин.
- Ребро называется петлей, если его концы совпадают.
- Степенью вершины называют количество ребер, для которых она является концевой (при этом петли считают дважды).
- Вершина называется изолированной, если она не является концом ни для одного ребра.
- Вершина называется висячей, если из неё выходит ровно одно ребро.
- Граф без кратных ребер и петель называется обыкновенным.