- Лекция «Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины»
- Дискретная случайная величина: примеры решений задач
- Калькуляторы на характеристики ДСВ
- Решенные задачи о ДСВ
- Распределения, близкие к геометрическому
- Задачи с независимыми событиями
- Другие задачи и законы распределения ДСВ
- Решебник по терверу
- Случайные величины. Дискретная случайная величина. Математическое ожидание
- Закон распределения дискретной случайной величины
- Математическое ожидание дискретной случайной величины
Лекция «Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины»
« Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины »
1. Закон распределения ДСВ:
Случайная величина. Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены. Например, число бракованных лампочек среди 10 купленных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2,….,10. Случайные величины обозначаются прописными буквами латинского алфавита: X , Y , Z и так далее, а их значения – соответствующими строчными буквами x , y , z и так далее.
Различают дискретные и непрерывные случайные величины.
Случайная величина называется дискретной, если множество её значений конечно или счетно, то есть множество её значений представляет собой конечную последовательность x 1 , x 2 ,…. x n или бесконечную последовательность x 1 , x 2 . x n , …
Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного множества. Число возможных значений непрерывной случайной величины бесконечно.
Например, если в качестве случайной величины рассматривать оценку студента на экзамене, то с определенной вероятностью, которая зависит от многих факторов, студент может получить или 2, или 3, или 4, или 5, но в результате сданного одним студентом экзамена в ведомости всегда стоит только одна оценка.
Случайная величина может быть задана законом распределения .
Законом распределения дискретной случайной величины (сокращенно ДСВ) называют соответствие между возможными значениями и их вероятностями.
Закон распределения дискретной случайной величины можно задать таблично, аналитически (в виде формулы) и графически.
При табличном задании закона распределения дискретной случайной величины таблица состоит из двух строк и называется законом или рядом распределения дискретной случайной величины X. Первая строка таблицы содержит возможные значения случайной величины, а вторая — соответствующие им вероятности.
Значения записываются в таблице, как правило, в порядке возрастания. Приняв во внимание, что в каждом отдельном испытании случайная величина принимает только одно возможное значение случайной величины X, заключаем, что события несовместны и образуют полную группу событий. Следовательно, сумма вероятностей этих событий, т.е. сумма вероятностей второй строки таблицы, равна единице:
В издательстве выпущено 100 книг по овцеводству. Лотереей разыграны одна книга в 500 руб. и 10 по 10 руб. Найти закон распределения случайной величины х — возможного выигрыша одной книги.
2. Числовые характеристики дискретной случайной величины:
Функцией распределения случайной величины называют функцию F ( x ), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х, то есть F ( x ) = P ( X x ).
Кроме закона распределения, который дает полное представление о случайной величине, часто используют числа, которые описывают случайную величину суммарно. Такие числа называют числовыми характеристиками случайной величины. К ним относятся математическое ожидание, дисперсия и среднее квадратичное отклонение дискретной случайной величины .
Математическим ожиданием (М) дискретной величины называют сумму произведений всех ее возможных значений, умноженных на их вероятности.
где x i , — значение случайной величины, p i — вероятность случайной величины.
Математическое ожидание дискретной случайной величины обладает свойствами , которые вытекают из его определения.
1. Математическое ожидание постоянной величины С есть постоянная величина
2. Математическое ожидание дискретной случайной величины X, умноженной на постоянную величину С, равно произведению математического ожидания М(Х) на С. То есть постоянный множитель можно выносить за знак суммирования
3. Математическое ожидание суммы дискретных случайных величин X и У равно сумме их математических ожиданий.
4. Математическое ожидание произведения независимых дискретных случайных величин X и Y равно произведению их математических ожиданий
Часто требуется оценить рассеяние возможных значений случайной величины вокруг его среднего значения. Дисперсией (рассеянием) D ( x ) случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: D ( X ) = М[Х -М(Х)] 2 .
Средним квадратичным отклонением ( (х)) случайной величины х называют квадратный корень из дисперсии: ( х )
Исследование вариационных статистических рядов рассмотрим на примере.
Пример: Дан дискретный вариационный ряд
Провести исследование дискретного вариационного ряда
1) найти объём выборки;
2) составить закон распределения случайной величины X ;
3) найти математическое ожидание, дисперсию и среднее квадратичное отклонение.
Закон распределения случайной величины X представлен таблицей:
3) Найдём математическое ожидание, дисперсию и среднее квадратичное отклонение:
Источник
Дискретная случайная величина: примеры решений задач
На этой странице мы собрали примеры решения учебных задач о дискретных случайных величинах. Это довольно обширный раздел: изучаются разные законы распределения (биномиальный, геометрический, гипергеометрический, Пуассона и другие), свойства и числовые характеристики, для каждого ряда распределения можно строить графические представления: полигон (многоугольник) вероятностей, функцию распределения.
Ниже вы найдете примеры решений о дискретных случайных величинах, в которых требуется применить знания из предыдущих разделов теории вероятностей для составления закона распределения, а затем вычислить математическое ожидание, дисперсию, среднее квадратическое отклонение, построить функцию распределения, дать ответы на вопросы о ДСВ и т.п.
Примеры для популярных законов распределения вероятностей:
Калькуляторы на характеристики ДСВ
Решенные задачи о ДСВ
Распределения, близкие к геометрическому
Задача 1. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?
Задача 2. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.
Задача 3. Стрелок, имея 3 патрона, стреляет в цель до первого попадания. Вероятности попадания при первом, втором и третьем выстрелах соответственно 0,6, 0,5, 0,4. С.В. $\xi$ — число оставшихся патронов. Составить ряд распределения случайной величины, найти математическое ожидание, дисперсию, среднее квадратичное отклонение с.в., построить функцию распределения с.в., найти $P(|\xi-m| \le \sigma$.
Задача 4. В ящике содержится 7 стандартных и 3 бракованных детали. Вынимают детали последовательно до появления стандартной, не возвращая их обратно. $\xi$ — число извлеченных бракованных деталей.
Составить закон распределения дискретной случайной величины $\xi$, вычислить ее математическое ожидание, дисперсию, среднее квадратическое отклонение, начертить многоугольник распределения и график функции распределения.
Задачи с независимыми событиями
Задача 5. На переэкзаменовку по теории вероятностей явились 3 студента. Вероятность того, что первый сдаст экзамен, равна 0,8, второй — 0,7, третий — 0,9. Найдите ряд распределения случайной величины $\xi$ числа студентов, сдавших экзамен, постройте график функции распределения, найдите $М(\xi), D(\xi)$.
Задача 6. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и С.К.О. этой случайной величины. Построить график функции распределения.
Задача 7. По цели производится 4 выстрела. Вероятность попадания при этом растет так: 0,2, 0,4, 0,6, 0,7. Найти закон распределения случайной величины $X$ — числа попаданий. Найти вероятность того, что $X \ge 1$.
Задача 8. Подбрасываются две симметричные монеты, подсчитывается число гербов на обеих верхних сторонах монет. Рассматривается дискретная случайная величина $X$- число выпадений гербов на обеих монетах. Записать закон распределения случайной величины $X$, найти ее математическое ожидание.
Другие задачи и законы распределения ДСВ
Задача 9. Два баскетболиста делают по три броска в корзину. Вероятность попадания для первого баскетболиста равна 0,6, для второго – 0,7. Пусть $X$ — разность между числом удачных бросков первого и второго баскетболистов. Найти ряд распределения, моду и функцию распределения случайной величины $X$. Построить многоугольник распределения и график функции распределения. Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение. Найти вероятность события $(-2 \lt X \le 1)$.
Задача 10. Число иногородних судов, прибывающих ежедневно под погрузку в определенный порт – случайная величина $X$, заданная так:
0 1 2 3 4 5
0,1 0,2 0,4 0,1 0,1 0,1
А) убедитесь, что задан ряд распределения,
Б) найдите функцию распределения случайной величины $X$,
В) если в заданный день прибывает больше трех судов, то порт берет на себя ответственность за издержки вследствие необходимости нанимать дополнительных водителей и грузчиков. Чему равна вероятность того, что порт понесет дополнительные расходы?
Г) найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины $X$.
Задача 11. Бросают 4 игральные кости. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.
Задача 12. Двое поочередно бросают монету до первого появления герба. Игрок, у которого выпал герб, получает от другого игрока 1 рубль. Найти математическое ожидание выигрыша каждого игрока.
Решебник по терверу
Нужны еще решения? Найди в решебнике свое (от 30 рублей и мгновенная доставка):
Источник
Случайные величины. Дискретная случайная величина.
Математическое ожидание
Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:
Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.
Случайные величины, как правило, обозначают через *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например,
.
* Иногда используют , а также греческие буквы
Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:
– количество очков, которое выпадет после броска игрального кубика.
В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина может принять одно из следующий значений:
.
– количество мальчиков среди 10 новорождённых.
Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:
, либо
мальчиков – один и только один из перечисленных вариантов.
И, дабы соблюсти форму, немного физкультуры:
– дальность прыжка в длину (в некоторых единицах).
Её не в состоянии предугадать даже мастер спорта 🙂
Тем не менее, ваши гипотезы?
Коль скоро речь идёт о множестве действительных чисел, то случайная величина может принять несчётно много значений из некоторого числового промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.
Таким образом, случайные величины целесообразно разделить на 2 большие группы:
1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.
…нарисовались непонятные термины? Срочно повторяем основы алгебры!
2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.
Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ
Сначала разберём дискретную случайную величину, затем – непрерывную.
Закон распределения дискретной случайной величины
– это соответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:
Довольно часто встречается термин ряд распределения, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».
А теперь очень важный момент: поскольку случайная величина обязательно примет одно из значений
, то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:
или, если записать свёрнуто:
Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:
Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:
Некоторая игра имеет следующий закон распределения выигрыша:
Найти
…наверное, вы давно мечтали о таких задачах 🙂 Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля.
Решение: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу, а значит, сумма их вероятностей равна единице:
Разоблачаем «партизана»:
– таким образом, вероятность выигрыша
условных единиц составляет 0,4.
Контроль: , в чём и требовалось убедиться.
Ответ:
Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности, теоремы умножения / сложения вероятностей событий и другие фишки тервера:
В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.
Решение: как вы заметили, значения случайной величины принято располагать в порядке их возрастания. Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.
Всего таковых билетов 50 – 12 = 38, и по классическому определению:
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.
С остальными случаями всё просто. Вероятность выигрыша рублей составляет:
И для :
Проверка: – и это особенно приятный момент таких заданий!
Ответ: искомый закон распределения выигрыша:
Следующее задание для самостоятельного решения:
Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины
– количества попаданий после 2 выстрелов.
…я знал, что вы по нему соскучились 🙂 Вспоминаем теоремы умножения и сложения. Решение и ответ в конце урока.
Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики.
Математическое ожидание дискретной случайной величины
Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения
с вероятностями
соответственно. Тогда математическое ожидание
данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:
или в свёрнутом виде:
Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:
очка
В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.
Теперь вспомним нашу гипотетическую игру:
Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:
, таким образом, математическое ожидание данной игры проигрышно.
Не верь впечатлениям – верь цифрам!
Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры 🙂 Ну, может, только ради развлечения.
Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.
Творческое задание для самостоятельного исследования:
Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?
Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино
Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.
Но прежде будет полезно размять пальцы на клавишах калькулятора:
Случайная величина задана своим законом распределения вероятностей:
Найти , если известно, что
. Выполнить проверку.
Тогда переходим к изучению дисперсии дискретной случайной величины, и по возможности, ПРЯМО СЕЙЧАС!! – чтобы не потерять нить темы.
Решения и ответы:
Пример 3. Решение: по условию – вероятность попадания в мишень. Тогда:
– вероятность промаха.
Составим – закон распределения попаданий при двух выстрелах:
– ни одного попадания. По теореме умножения вероятностей независимых событий:
– одно попадание. По теоремам сложения вероятностей несовместных и умножения независимых событий:
– два попадания. По теореме умножения вероятностей независимых событий:
Проверка: 0,09 + 0,42 + 0,49 = 1
Ответ:
Примечание: можно было использовать обозначения – это не принципиально.
Пример 4. Решение: игрок выигрывает 100 рублей в 18 случаях из 37, и поэтому закон распределения его выигрыша имеет следующий вид:
Вычислим математическое ожидание:
Таким образом, с каждой поставленной сотни игрок в среднем проигрывает 2,7 рубля.
Пример 5. Решение: по определению математического ожидания:
поменяем части местами и проведём упрощения:
таким образом:
Выполним проверку:
, что и требовалось проверить.
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам
Источник