Способы задания для последовательности

Числовые последовательности для чайников: определение, формулы

  • 12 января 2021 г.
  • 10 минут
  • 78 883
  • 2

По просьбам читателей возобновляем рубрику «Математика для чайников». Говорим о числовых последовательностях и вычислении их пределов. Выясняем, чем последовательность отличается от простого набора чисел и как ее можно задать.

Нужно больше полезной и интересной информации? Этого добра много не бывает! Присоединяйтесь к нам в телеграм.

Последовательности чисел

Мы сталкиваемся с последовательностями чисел каждый день. Вот только встреча с последовательностями на экзамене может быть не самой приятной.

Чтобы было иначе, читаем эту статью, а если что-то непонятно, смело обращаемся к нашим консультантам за помощью.

Одна из самых интересных и известных последовательностей – числа Фибоначчи. Эта последовательность имеет удивительные свойства и часто встречается в природе. Например, семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из них, являются членами последовательности Фибоначчи.

Что такое числовая последовательность?

Последовательность – это набор элементов множества, который удовлетворяет следующим условиям:

  • для каждого натурального числа существует элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента последовательности можно указать следующий за ним элемент.

Числовая последовательность – это функция переменной n, которая принадлежит множеству натуральных чисел N.

Существованием функции, по которой можно вычислить любой член последовательности, она и отличается от случайного набора чисел.

На словах звучит громоздко и сложно. Но на то это и математика, чтобы записывать все буквами и числами. Обычно последовательность обозначают буквой x, хотя можно применять и другие.

Какие бывают последовательности

  • постоянную, или монотонную последовательность: 1, 1, 1, 1, 1.
  • возрастающую последовательность, в которой каждый следующий элемент больше предыдущего
  • убывающую последовательность, в которой каждый следующий элемент меньше предыдущего

Также последовательности делятся на сходящиеся и расходящиеся. Сходящаяся последовательность имеет конечный предел. А предел расходящейся последовательности равен бесконечности, либо последовательность вообще не имеет предела. Но о пределах немного позже.

Рассмотрим самые известные примеры последовательностей. Еще со школы всем знакомы арифметическая и геометрическая прогрессии.

Арифметическая прогрессия

Посмотрим на числа:

Что у них общего? Они все нечетные и каждое следующее можно получить из предыдущего, прибавляя к нему одно и то же число. Назовем его d. В данном случае d=2.

Описанная выше последовательность – арифметическая прогрессия. Приведем основные формулы для нее:

Элемент a с номером n называется общим членом последовательности. А число d – разностью афифметической прогрессии.

Сумма первых n членов прогрессии вычисляется по формуле:


Также африфметическая прогрессия обладает характреристическим свойством:

Геометрическая прогрессия

Геометрической прогрессией называется последовательность чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число q – знаменатель прогрессии. Элементы геометрической прогрессии задаются соотношением:

Основные формулы для геометрической прогрессии приведены ниже. Формула n-го члена прогрессии:

Читайте также:  Оцинковщик горячим способом вредность

Сумма первых n членов прогрессии:

Характеристическое свойство геометрической прогрессии:

Способы задания последовательностей

Последовательность можно задать несколькими способами:

  1. Аналитически или, проще говоря, формулой.
  2. Реккурентно. Здесь известно несколько первых членов прогрессии и есть формула, которая позволяет вычислить последующие.
  3. Описательно, простым перечислением всех элементов последовательности.

Предел последовательности

Мы уже говорили о пределах функций и способах их вычисления. Из определения последовательности следует, что последовательность – это и есть некоторая функция. Так что, вычисление пределов последовательностей будет во многом схоже с вычислением пределов функций. Правда, со своими особенностями.

Предел последовательности – это такой объект, к которому стремятся члены последовательности с ростом порядкового номера n.

Скажем иначе. Это число, в окрестности которого лежат все члены последовательности, начиная с некоторого.

Переменная n в последовательностях всегда стремится к бесконечности, в сторону увеличения натуральных чисел.

Что нужно помнить, вычисляя пределы последовательностей

Кстати! Также полезно помнить, что для всех наших читателей сейчас действует скидка 10% на любой вид работы.

  1. Последовательность может иметь только один предел.
  2. Если последовательность имеет предел, то она ограничена. Обратное верно не всегда!
  3. Если члены некоторой последовательности zn заключены между соответствующими членами двух последовательностей xn, yn, сходящихся к одному пределу, то и эта последовательность сходится к тому же пределу.
  4. Предел постоянной последовательности равен ее постоянному.
  5. Если две последовательности x и y равны между собой, то пределы этих последовательностей также равны между собой, если они существуют.
  6. Если каждый член сходящейся последовательности не превосходит соответствующего члена другой сходящейся последовательности, то и предел первой не превосходит предела второй.
  7. Предел суммы (разности) двух последовательностей равен сумме (разности) их пределов. При условии, что обе последовательности имеют пределы.
  8. Предел произведения двух последовательностей, имеющих пределы, существует и равен произведению пределов последовательностей.
  9. Постоянный множитель можно выносить за знак предела.
  10. Предел частного двух последовательностей, имеющих пределы, равен частному пределов этих последовательностей, если предел знаменателя не равен нулю.

Для проверки своих решений при вычислении пределов не обязательно нести работу на проверку преподавателю. Достаточно воспользоваться онлайн калькулятором.

Тема последовательностей разрабатывалась многими математиками на протяжении веков. Охватить ее в одной статье просто невозможно. Здесь мы дали лишь поверхностное представление. Если у вас есть вопросы или нужна консультация – обращайтесь к специалистам студенческого сервиса, которые помогут быстро прийти к понимаю.

Источник

Числовые последовательности и способы их задания

Числовые последовательности и способы их задания.

Определение 1. Функцию y = f ( x ), xN называют функцией натурального аргумента или числовой последовательностью и обозначают: y = f ( n ) или y 1 , y 2 , y 3 , . y n , . или ( y n ).

В данном случае независимая переменная – натуральное число.

Способы задания числовой последовательности.

Правила задания последовательности описываются словами, без указания формул или когда закономерности между элементами последовательности нет.

Пример 1. Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . .

Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, . .

Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, . .

Любой n -й элемент последовательности можно определить с помощью формулы.

Читайте также:  Реши уравнение любым способом

Пример 1. Последовательность чётных чисел: y = 2 n .

Пример 2. Последовательность квадрата натуральных чисел: y = n 2 ;

1, 4, 9, 16, 25, . n 2 , . .

Пример 3. Стационарная последовательность: y = C ;

Частный случай: y = 5; 5, 5, 5, . 5, . .

Пример 4 . Последовательность y = 2 n ;

2, 2 2 , 2 3 , 2 4 , . 2 n , . .

Указывается правило, позволяющее вычислить n -й элемент последовательности, если известны её предыдущие элементы.

Пример 1 . Арифметическая прогрессия: a 1 = a , a n +1 = a n + d , где a и d – заданные числа, d — разность арифметической прогрессии. Пусть a 1 =5, d =0,7, тогда арифметическая прогрессия будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; . .

Пример 2. Геометрическая прогрессия: b 1 = b , b n +1 = b n q , где b и q – заданные числа, b 0, q 0; q – знаменатель геометрической прогрессии. Пусть b 1 =23, q =½, тогда геометрическая прогрессия будет иметь вид: 23; 11,5; 5,75; 2,875; . .

Пример 3. Последовательность Фибоначчи. Эта последовательность легко задаётся рекуррентно: y 1 =1, y 2 =1, y n -2 + y n -1 , если n =3, 4, 5, 6, . . Она будет иметь вид:

1, 1,2, 3, 5, 8, 13, 21, 34, 55, . .

Аналитически последовательность Фибоначчи задать трудно, но возможно. Формула, по которой определяется любой элемент этой последовательности, выглядит так:

3.2. Закрепление нового материала. Решение задач.

Для закрепления знаний выбираются примеры в зависимости от уровня подготовки учащихся.

Пример 1. Составить возможную формулу n -го элемента последовательности ( y n ):

а) Это последовательность нечётных чисел. Аналитически эту последовательность можно задать формулой y = 2 n +1.

б) Это числовая последовательность, у которой последующий элемент больше предыдущего на 4. Аналитически эту последовательность можно задать формулой y = 4 n .

Пример 2 . Выписать первые десять элементов последовательности, заданной рекуррентно: y 1 =1, y 2 =2, y n = y n -2 + y n -1 , если n = 3, 4, 5, 6, . .

Каждый последующий элемент этой последовательности равен сумме двух предыдущих элементов.

Пример 3. Последовательность ( y n ) задана рекуррентно: y 1 =1, y 2 =2, y n = 5 y n -1 — 6 y n -2 . Задать эту последовательность аналитически.

Найдём несколько первых элементов последовательности.

Получаем последовательность: 1; 2; 4; 8; 16; 32; 64; . которую можно представить в виде

2 0 ; 2 1 ; 2 2 ; 2 3 ; 2 4 ; 2 5 ; 2 6 . .

n = 1; 2; 3; 4; 5; 6; 7. .

Анализируя последовательность, получаем следующую закономерность: y = 2 n -1 .

Пример 4. Дана последовательность y n =24 n +36-5 n 2 .

а) Сколько в ней положительных членов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Данная числовая последовательность – это функция вида y = -5 x 2 +24 x +36, где x

а) Найдём значения функции, при которых -5 x 2 +24 x +36>0. Решим уравнение -5 x 2 +24 x +36=0.

D = b 2 -4 ac =1296, X 1 =6, X 2 =-1,2.

Уравнение оси симметрии параболы y = -5 x 2 +24 x +36 можно найти по формуле x =, получим: x =2,4.

Неравенство -5 x 2 +24 x +36>0 выполняется при -1,2 В этом интервале находится пять натуральных чисел (1, 2, 3, 4, 5). Значит в заданной последовательности пять положительных элементов последовательности.

б) Наибольший элемент последовательности определяется методом подбора и он равен y 2 =64.

в) Наименьшего элемента нет.

1. Составьте возможную формулу n -го элемента последовательности ( y n ), если последовательность имеет вид: 2, 4, 6, 8, 10, 12, . .

2. Выписать первые десять элементов последовательности заданной рекуррентно: y 1 =1, y 2 =3, y n = y n -2 + y n -1 .

3. Найдите формулу n -го элемента и сумму первых 15 элементов арифметической прогрессии с первым элементом 3,4 и разностью 0,9.

4. Найдите сумму бесконечной геометрической прогрессии с первым членом 3,5 и знаменателем —

5 . В арифметической прогрессии a 5 = -150, a 6 = -147. Найдите номер первого положительного элемента этой последовательности.

Читайте также:  Тесты по теме способы передачи чужой речи ответы

6 . Укажите наиболее близкий к нулю элемент арифметической прогрессии

7. Дана последовательность y n =12 n + 8 — 2,5 n 2 .

а) Сколько в ней положительных элементов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Источник

Гл. 8. Последовательности. Урок 2. Способы задания

Арифметическая и геометрическая прогрессии (14 часов)

Способы задания последовательностей, урок 2

Воспитательн а я

Создание условий для расширение понятийной базы за счет включения в нее новых элементов (понятия « словесный способ задания», «рекуррентный способ») ; формирование умений находить члены последовательности разными способами .

Ф ормировани е умений давать полные, математически грамотные ответы, развити е оперативной памяти, произвольного внимания, наглядно-действенного мышления.

Повышение коммуникативной активности учащихся, создание благоприятных условий для проявления индивидуальности, выбора своей позиции, формирование умения аргументировано отстаивать свою точку зрения, воспитание настойчивости, воли, характера учащихся для достижения конечного результата .

Планируемые результаты обучения , в том числе и формирование УУД:

Личностные: уметь проводить самооценку на основе критерия успешности учебной деятельности.

Метапредметные: работа ют над понятием информация — знание; развива ют познавательную деятельность.

Предметные: понима ют , что такое числовая последовательность, какие бывают способы задания последовательности , уме ют использовать формулы для вычисления членов последовательности й , записи самой последовательности.

Универсальные учебные действия:

Познавательные УУД: умеют устанавливать причинно-следственные связи, строить логическое рассуждение, делать умозаключения и выводы.

Регулятивные УУД: умеют самостоятельно планировать альтернативные пути достижения це­лей, осознанно выбирать наиболее эффективные способы решения учебных задач.

Коммуникативные УУД : учитывают разные мнения и стремятся к координации различных по­зиций в сотрудничестве; умеют работать в группе.

Личностные УУД: развивают способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Основные понятия: словесный способ, рекуррентная формула

Урок открытия новых знаний

Источники информации: учебник «Алгебра, 9 класс: учеб. для общеобраз. учреждений» Мордкович А.Г., М.: Просвещение, 2014 г.,

ТСО: ноутбук, мультимедиапроектор, экран

Средства наглядности: презентация « Способы задания последовательностей » , «Знаменитые последовательности»

Дидактические средства обучения: карточки-помощницы для слабоуспевающих учащихся

Цель этапа: подготовить учащихся к работе на уроке

Взаимное приветствие. Проверка готовности учащихся к уроку. Быстрое включение учащихся в деловой ритм . Правила дружной работы

Раппорт дежурного, фиксация отсутствующих

Актуализация опорных знаний учащихся

Цель этапа: подготовка учащихся к восприятию нового учебного материала, т.е. актуализация знаний и практических и умственных умений

Учитель: П роверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:
а). П онедельник, вторник,…..

б). Я нварь, февраль, март…;

в). Акулич М., Байрангулов Р., Балышева А…..(список класса);

г). 10,11,12,…99 . (последовательность двузначных чисел)

Из ответов ребят делается вывод, что вышеназванные задания – это последовательности, то есть какой-то упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте, и, если поменять местами члены, то последовательность нарушится (вторник, четверг, понедельник – это просто перечисление дней недели).

1. Сформулируйте определение числовой последовательности.

2. Назовите способы задания числовой последовательности.

3. Приведите пример последовательности, заданной формулой n-го члена. Найдите пять первых членов этой последовательности.

Источник

Оцените статью
Разные способы