Составы строительных материалов
СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ
Тема 1. Составы и структура строительных материалов
Составы строительных материалов
Состав – это качественная и количественная характеристика веществ, составляющих сырьевые материалы и готовые изделия.
Различают несколько видов составов сырьевых материалов и готовых изделий: элементный (вещественный), химический, минералогический, фазовый, гранулометрический (для сыпучих материалов).
1.1 Элементный или вещественный состав —совокупность химических элементов составляющих вещество.Элементный или вещественный состав определяет природу вещества, т.е. показывает, какой это материал – минеральный, органический или же имеющий сложный состав.
Например, в состав неорганических каменных материалов природных или искусственных (гранит, мрамор, кирпич керамический, бетон и др.) входят следующие химические элементы: кремний (Si), алюминия (Al), кальция (Ca), магния (Mg), железа (Fe), кислорода (O); органических (битум, полимерные материалы) — углерод (С); водород (Н), кислород (О), сера (S), азот (N).
Все органические материалы горючи, а минеральные огнестойкие.
1.2 Химический состав.Химический состав строительных материалов выражают по-разному. Например, химический состав неорганических материалов (цемент, известь, глина, стекло и др.) выражается количеством содержащихся в них оксидов (таблица 1); химический состав битумов — содержанием трех групп соединений: асфальтенов (с молекулярной массой 1000 – 5000), смол (с молекулярной массой 500-1000) и масел (с молекулярной массой 100 – 500), %; металлов и сплавов – массовой долей элементов, %.
Зная химический состав веществ или материалов, можно предполагать какими свойствами, они обладают. Например, высокое содержание кремнезема (SiO2) и низкое содержание оксида кальция (CaO) и глинозема (Al2O3) свидетельствует, что состав кислый, а глины легкоплавкие. Высокое содержание оксида кальция (CaO) свидетельствует о том, что состав сырья или материала имеет основный характер. Если химический состав включает аббревиатуру «ппп» (потери при прокаливании), это свидетельствует, что при воздействии на материал высоких температур теряется летучая, органическая составляющая и химически связанная вода (таблица 1).
Таблица 1 — Химические составы и характеристики
Материал | Химический состав, % | Характеристики | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SiO2 | CaO | Al2O3 | Fe2O3 (+FeO) | MgO | другие оксиды | ппп | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Глина | 53-81 | 0,5-15 | 7-3 | 3-6 | 0,5-3 | 1-5 |
Термины | Определения |
мука | продукт тонкого помола, например, известняковых горных пород — известняковая мука |
пыль | отсев, например, при ситовом анализе песка зерен размером менее 0,14 мм |
порошок | специально подготовленная сыпучая смесь определенного состава |
песок | мелкозернистая сыпучая смесь зерен с размерами св. 0,14 мм до 5 мм |
гравий | неорганический зернистый сыпучий материал с зернами крупностью св. 5 мм, форма зерен окатанная |
щебень | зернистый сыпучий материал с зернами крупностью св. 5 мм, форма зерен рваная |
гравийно-песчаная смесь | сыпучая смесь, содержащая как песок, так и гравий |
зерно | отдельная частица материала определенных формы и размеров |
гранула | искусственно полученное зерно |
Для характеристики сыпучей смеси определяют зерновой и фракционный составы:
— зерновой состав – состав, содержащий зерна практически любых размеров и образующий непрерывную гранулометрию. Зерновой состав характеризуется в основном размерами зерен и их формой, например, основные размеры зерен песка речного кубанского от 0,14 до 0,63 мм, форма зерен окатанная;
— фракционный состав— состав смеси, в которой зерна, близкие по размерам, образуют фракции, прерывистую гранулометрию. Фракционный состав характеризуется размерами фракций и их количеством, например, фракционный состав щебня фракция 15-10 мм – 20 % , фр.10-20 мм – 40%, фр. 20-40 мм – 40%;
Структура материалов
Структура (строение, расположение, порядок) – совокупность устойчивых связей тела (объекта), обеспечивающих его целостность.
Структуру строительного материала изучают на трех уровнях: макро уровне — макроструктура – строение материала видимое невооруженным глазом; микро уровне — микроструктура – строение материала, видимое через микроскоп; внутренняя структура строение вещества, изучаемое на молекулярно-ионном уровне (физико-химические методы исследования – электронный микроскоп, термогравиметрия, рентгеноструктурный анализ и т.д).
2.1 Макроструктура –это видимая невооруженным глазом или при небольшом увеличении внутренняя или поверхностная часть материала. Макроструктура в целом характеризуется фазовым составом, т.е. наличием элементов структуры в виде твердого тела, жидкости и газовой среды.
При визуальном осмотре изделия выявляют зоны и участки, различающиеся пористостью, окраской, зерновым составом и другими особенностями, а также различные дефекты структуры в виде трещин, каверн и пр.
Макроструктуру строительных материалов делят на несколько групп: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, и рыхлозернистая (порошкообразная). Конгломератная структура — соединение разнородных веществ, обычно в виде зерен, кусков различных форм и размеров, например, конгломератную структуру имеют тяжелые бетоны. Ячеистая структура свойственна газо-, пенобетонам, пеностеклу, пемзе. Ячеистая структура характеризуется наличием макропор, у мелкопористых большинство ячеек размером менее 1 мм, например у керамических материалов. Волокнистая структура присуща природным (древесина) или искусственным (минеральная вата) материалам с расположением волокон в одном направлении или хаотично. Показатели свойств таких материалов заметно отличаются при физических воздействиях вдоль или поперек волокон. Слоистая структура предполагает наличие в материале нескольких, в том числе и разнородных слоев, характерна для листовых материалов, плитных, рулонных гидроизоляционных и др. Рыхлозернистую структуру имеют сыпучие порошкообразные материалы, состоящие из большого количества несвязанных зерен или мелких частиц, например щебень (гравий), песок — заполнители для бетонов и растворов, материалы для тепло- звукоизоляционной засыпки.
В процессе структурообразования в определенный промежуток времени, как правило, имеют место только две фазы: жидкая (расплав или раствор) и твердая (кристалл или стекло). При стабилизации структуры возможно наличие третьей (газовой фазы).
2.2 Микроструктура – строение вещества, материала различимое с помощью оптических приборов (под микроскопом). Классически выделяют три типа микроструктур: кристаллическую, аморфную, смешанную.
Кристаллическая структура – упорядоченная, наиболее устойчивая форма агрегатного состояния вещества. Кристаллическая структура формируется из термодинамически неустойчивых диспергированных систем, обладающих огромным запасом свободной энергии. Кристаллизация, как правило, самопроизвольный процесс с выделением тепла (энергии). Образующиеся кристаллы определяют физические, механические, термические, электрические, оптические и другие свойства структуры. Переход кристаллического тела в аморфное состояние связан с сообщением телу механической, химической или тепловой энергии.
Смешанная аморфно-кристаллическая структура, точнее стеклокристаллическая – сложная структура. Соотношение между кристаллической и аморфной фазами оказывает огромное влияние на свойства материала.
2.3 Внутреннее строениевещества определяет его механическую прочность, твердость, теплопроводность и др. свойства, зависит от его агрегатного состояния и устойчивости и может иметь строго упорядоченное строение (т.е. кристаллическую решетку) или беспорядочное (хаотическое расположение молекул и атомов).
Природа частиц, находящихся в узлах кристаллической решетки, и химические связи определяют тип кристаллической решетки: атомный, молекулярный, ионный, металлический.
Вещества с атомными решетками характеризуются высокой твердостью и тугоплавкостью, они практически не растворимы ни в каких растворителях. Таких веществ сравнительно мало, например алмаз, кремний. Молекулярную решетку имеют почти все вещества неметаллы, кроме углерода и кремния, они имеют невысокую твердость, легкоплавкие, летучие. К соединениям с ионной кристаллической решеткой относят большинство солей и некоторые оксиды. По прочности ионные решетки уступают атомным решеткам, но превосходят молекулярные, и имеют высокие температуры плавления. Металлы отличаются от других соединений атомов наличием свободных электронов, отсюда высокие электро- и теплопроводность.
Решетки разных веществ отличаются друг от друга природой образующих их частиц и расположением частиц в пространстве, образуя элементарные ячейки, которые придают веществу только ему свойственные особенности.
Источник
Составы строительных материалов
Состав – это качественная и количественная характеристика веществ, составляющих сырьевые материалы и готовые изделия.
Различают несколько видов составов сырьевых материалов и готовых изделий: элементный (вещественный), химический, минералогический, фазовый, гранулометрический.
1.1 Элементный или вещественный состав,как совокупность химических элементов составляющих вещество.Элементный или вещественный состав определяет природу вещества, т.е. показывает, какой это материал – минеральный, органический или же имеющий сложный состав.
Например, в состав неорганических каменных материалов природных или искусственных (гранит, мрамор, кирпич керамический, бетон и др.) входят следующие химические элементы: кремний (Si), алюминия (Al), кальция (Ca), магния (Mg), железа (Fe), кислорода (O); органических (битум) — углерод (С); водород (Н), кислород (О), сера (S), азот (N).
1.2 Химический состав.Химический состав строительных материалов выражают по-разному. Например, химический состав неорганических материалов (цемент, известь, глина, стекло и др.) количеством содержащихся в них оксидов, %, металлов и сплавов – массовой долей элементов, %, битумов содержанием трех групп соединений: асфальтенов (с молекулярной массой 1000 – 5000), смол (с молекулярной массой 500-1000) и масел (с молекулярной массой 100 – 500), % и т.д.
Зная химический состав веществ или материалов, можно предполагать какими свойствами, они обладают (табл. 1, 2, 3). Например, высокое содержание кремнезема (SiO2) и низкое содержание оксида кальция (CaO) и глинозема (Al2O3) свидетельствует, что состав кислый, а глины легкоплавкие. Высокое содержание оксида кальция (CaO) свидетельствует о том, что состав сырья или материала имеет основный характер. Если химический состав включает аббревиатуру «ппп» (потери при прокаливании), это свидетельствует, что при воздействии на материал высоких температур теряется летучая, органическая составляющая и химически связанная вода (табл.1).
В табл. 2 представлен химический состав углеродистой и низколегированной стали. Физико-механические свойства арматурной стали зависят от химического состава (табл.3).
Примерный групповой состав битума:
Карбены и карбоиды 1-3%
Асфальтеновые кислоты и ангидриды 1%.
Масла придают битумам подвижность, текучесть, увеличивают испаряемость, снижают температуру размягчения; смолы обуславливают растяжимость и эластичность битумов; содержание асфальтенов определяет температурную устойчивость, вязкость и твердость (хрупкость) битумов;
Таблица 1 Химические составы и характеристики некоторых материалов
Материал | Химический состав, % | Характеристики | |||||||||||||||||||||||||||||||||||||||||||||||||||
SiO2 | CaO | Al2O3 | Fe2O3 (+FeO) | MgO | другие оксиды | ппп | |||||||||||||||||||||||||||||||||||||||||||||||
Глина | 53…81 | 0,5…15 | 7…23 | 3…6 | 0,5…3 | 1…5 |
Класс арматурной стали | Предел текучести | Временное сопротивление разрыву | Относительное удлинение | Равномерное удлинение | Ударная вязкость при температуре — 60 °С | Испытание на изгиб в холодном состоянии (с — толщина оправки, |
Н/мм 2 | кгс/ мм 2 | Н/мм 2 | кгс/мм 2 | МДж/м 2 | кгс·м/cм 2 | d — диаметр |
не менее | стержня) | |||||
А-I (А240) | — | — | — | 180°; с = d | ||
А-II (А300) | — | — | — | 180°; c = 3d | ||
Ас-II (А300) | — | 0,5 | 180°; c = d | |||
А-III (А400) | — | — | — | 90°; c = 3d | ||
А-IV (А600) | — | — | 45°; c = 5d | |||
А-V (А800) | — | — | 45°; c = 5d | |||
А-VI (А1000) | — | — | 45°; c = 5d |
1.3 Минералогический состав как совокупность природных или искусственных соединений (минералов). Минералы – природные или искусственные химические материалы, отличающиеся однородным составом и свойствами. Эта характеристика дает более полную информацию о материале. Зная минералогический состав можно отличить один материал от другого и предопределить не только физические и химические свойства сырья и материалов, но и более специфические характеристики, технологические свойства.
Например, такие горные породы как граниты обладают благоприятным для строительного камня минералогическим составом, отличающимся высоким содержанием кварца (25…30 %), полевых шпатов (55…65%) и небольшим количеством слюды (5…10 %).
Портландцемент – гидравлическое вяжущее вещество, получаемое путем тонкого измельчения клинкера с добавкой двуводного гипса (3-5 %).
В составе клинкера портландцемента преобладают такие минералы как:
— алит– 3CaO·SiO2 (или C3S) – самый важный минерал клинкера, определяющий быстроту твердения, прочность и др. свойства портландцемента, содержится в клинкере в количестве 45-60%;
— белит— 2CaO·SiO2 (или C2S) – второй по важности и содержанию (20-30 %) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента;
— целит — 3CaO·Al2O3 (C3A) – самый активный клинкерный минерал, быстро взаимодействует с водой, содержится в количестве 4-12%, является причиной сульфатной коррозии бетона;
— четырехкальциевый алюмоферрит — — 4CaO·Al2O3·Fe2O3 (C4AF) –характеризуется умеренным тепловыделением и по быстроте твердения занимает промежуточное положение между C3S и C2S, содержится в клинкере в количестве 10-20 %.
1.4 Фазовый состав как совокупность гомогенных частей системы, однородных по свойствам и физическому строению. Фазовый состав – структурная характеристика материала, сырья. Если структуру составляют несколько фаз, то между ними заметна линия или граница раздела. На микроуровне можно различить разнородные группы кристаллов и границу их раздела, кристаллов и стеклообразных соединений и площадь их контакта. Граница раздела предопределяет физические, химические и термические свойства материалов, веществ. На макроуровне рассматривают три основные фазы: твердую, жидкую и газообразную.
Например, фазовый состав материала и фазовые переходы воды, находящиеся в его порах, оказывают влияние на все свойства и поведение материала при эксплуатации. В материале выделяют твердые вещества, образующие стенки пор, т.е «каркас» материала, и поры заполненные воздухом и водой. Если вода замерзает, то образующийся в порах лед изменяет механические и теплофизические свойства материала, увеличение объема замерзающей воды вызывает внутренние напряжения, способные разрушить со временем материал.
1.5 Гранулометрический состав – сочетание в сыпучей смеси зерен либо гранул различных размеров и формы.Зерна по размерам по размерам подразделяют на группы (фракции). Гранулометрия рассматривает как свойства отдельных зерен, так и характеристики смеси в целом.
Каждое зерно характеризуется размером, формой, плотностью, химическим и минералогическим составом. В любой смеси имеются максимально крупные и минимально мелкие зерна, их определяется ситовым анализом. Для характеристики сыпучей строительной смеси в зависимости от средней величины зерен в ней используют следующие технические термины:
— мука – продукт тонкого помола, например, известняковая мука — известняковых горных пород;
— пыль – отсев, например, при ситовом анализе песка зерен размером менее 0,14 мм;
— порошок – специально подготовленная сыпучая смесь определенного состава;
— песок – мелкозернистая сыпучая смесь зерен с размерами св. 0,14 мм до 5 мм;
— гравий — неорганический зернистый сыпучий материал с зернами крупностью св. 5 мм, форма зерен окатанная;
— щебень — зернистый сыпучий материал с зернами крупностью св. 5 мм, форма зерен рваная;
— гравийно-песчаная смесь– сыпучая смесь, содержащая как песок, так и гравий;
— крошка, зерно — отдельная частица материала определенных формы и размеров;
— гранула – искусственно полученное зерно.
Для характеристики сыпучей смеси определяют зерновой состав, фракционный состав, удельную поверхность, сыпучесть, насыпную плотность, пустотность:
— зерновой состав – состав, содержащий зерна практически любых размеров и образующий непрерывную гранулометрию. Зерновой состав характеризуется в основном размерами зерен и их формой, например, основные размеры зерен песка речного кубанского от 0,14 до 0,63 мм, форма зерен окатанная;
— фракционный состав— состав смеси, в которой зерна, близкие по размерам, образуют фракции, прерывистую гранулометрию. Фракционный состав характеризуется размерами фракций и их количеством, например, фракционный состав щебня фракция 15-10 мм – 20 % , фр.10-20 мм – 40%, фр. 20-40 мм – 40%;
— удельная поверхность – суммарная поверхность зерен. Различают внешнюю удельную поверхность зерен и полную с учетом пористости зерен, м 2 /кг, см 2 /г, например, удельная поверхность цемента 2500-3000 см 2 /г;
— насыпную плотность – масса сыпучего материала в единице замкнутого объема:
ρ нас. =m·/V, кг/м 3 (г/см 3 ),
где m – масса сыпучего материала, кг (г),
V – объем сыпучего материала, м 3 .
Например, насыпная плотность песка ρ нас =1300 кг/м 3 (песок кубанский речной), портландцемента – ρ нас =3100…3300 кг/м 3 ;
— пустотность – суммарный объем пустот, образующихся в результате свободной укладки сыпучего материала, отнесенный к его полному объему:
где α – пустотность, ед. или %,
Vп – объем пустот, м 3 ,
Vсм – полный объем смеси, м 3 .
Пустотность не зависит от размера зерен, а зависит от их формы, количества и размера фракций, а также от способов укладки смеси;
— сыпучесть – способность смесей растекаться при свободной укладке, формовании или складированию. Сыпучесть характеризуется углом естественного откоса, β. Угол естественного откоса зависит от размеров и формы зерен, состояния их поверхности, насыпной плотности и влажности сыпучей смеси. Угол естественного откоса некоторых сыпучих материалов:
щебень β = 40…45 град.;
гравий β = 35…40 град.;
крупный β = 30…35 град.;
средний β = 25…30 град.;
мелкий β = 25 град.
Сыпучесть гравия выше, чем щебня, благодаря более окатанной форме его кусков, а сыпучесть песка зависит от его крупности. С увеличением влажности сыпучесть мелкозернистых смесей, имеющих большую удельную поверхность, сначала уменьшается в большей степени, чем крупнозернистых, за счет вытеснения водой воздушных прослоек и уменьшения коэффициента трения смеси.
В технологии строительных материалов сыпучие смеси, используемые в качестве заполнителей, наполнителей, добавок т.д., оказывают существенное влияние на формирование заданной плотности или пористости структуры материала. Для получения плотной структуры необходимо использовать двух- или многофракционные смеси, так как пустоты, образующиеся между крупными зернами, заполняются зернами меньших размеров, увеличивая плотность, например, набор из трех различных рассчитанных фракций может дать плотность около 81 %, из 4-х и более фракций – до 85 % и выше. Однако практически высокую плотность сухой сыпучей смеси получить трудно по следующим причинам:
— форма зерен отличается от формы шара;
— зерна фракций различны по размерам.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник