Способы выполнения неразъемных соединений ов это

Методы неразъемного соединения оптоволокна: преимущества и недостатки

На рынке систем безопасности все большую популярность получают системы передачи сигналов по каналам оптоволоконных линий связи, которые имеют ряд несомненных преимуществ: широкая пропускная способность, большая дальность передачи сигнала, коррозионная стойкость. Но существенным недостатком таких систем является сложность их монтажа, особенно в части соединения волокон кабеля


С.Д. Карачунский

Руководитель отдела маркетинга компании «В 1 электроникс»

В настоящее время разработано несколько способов соединения оптических волокон, которые можно разделить на два класса: разъемные и неразъемные. Неразъемные соединения осуществляются методами сварки и склеивания, а также с помощью механических соединителей. Такие способы имеют свои сильные и слабые стороны, каждый из них предоставляет определенные возможности, без знания которых довольно трудно эффективно решать поставленные задачи.

Соединения оптических волокон с помощью сварки

Наиболее распространенным способом монтажа оптоволокна является соединение при помощи сварки. В процессе сваривания оптических волокон происходит помещение концов соединяемых нитей в поле мощного источника тепловой энергии с последующим их оплавлением. Широко применяется сваривание в пламени газовой горелки, в поле электрического разряда, в зоне мощного лазерного излучения.

Международная электротехническая комиссия предлагает считать для сварного соединения оптических волокон, полученного в полевых условиях, максимальную величину вносимых потерь не более 0,2 дБ (IEC 1073-1). При современном развитии технологии сварки оптических волокон этот показатель может быть достигнут даже теми специалистами, которые не обладают значительным опытом сварки оптических волокон – современное высокотехническое оборудование и отработанная технология монтажа позволяет получать соединения с потерями в них, равными 0,02–0,15 дБ.

Основные этапы проведения работ:

  • зачистка кабеля, удаление защитных оболочек;
  • подготовка торцевых поверхностей соединяемых оптических волокон;
  • установка защитной термоусаживаемой трубки на одно из волокон (если длина волокна незначительная, то защитную трубку можно установить позднее);
  • размещение оптических волокон в сварочном аппарате либо в направляющей колодке;
  • юстировка свариваемых оптических волокон.

Существуют 2 метода юстировки:

– пассивный способ – юстировка предусматривает выравнивание сердцевин свариваемых оптических волокон по их геометрическим размерам; – активный способ – он основан на достижении минимальных потерь при пропуске через место соединения тестового оптического сигнала;

  • предварительное оплавление торцов оптических волокон (для ликвидации микротрещин и неровностей, возникающих в процессе скалывания);
  • непосредственное сваривание оптических волокон;
  • оценка качества сварки (при помощи микроскопа, рефлектометра);
  • защита места сварки одного волокна с помощью термоусаживаемой гильзы;
  • нанесение защитных оболочек кабеля, либо укладка в сплайс-пластину, кассету.

Рассмотрим 3 основных способа соединения при помощи сварки.

Сварка оптоволокна при помощи газовой горелки

Данный способ позволяет получить соединения, отличающиеся высокой механической прочностью. Но вместе с тем технологически сложно создавать зону нагрева малого объема, что в итоге приводит к термической деформации волокон и не позволяет добиться точной юстировки. При сваривании одномодового волокна даже незначительное смещение центров волокон относительно друг друга приводит к большой величине вносимых потерь, поэтому способ сварки при помощи газовой горелки широко применяется при монтаже многомодовых оптических кабелей.

Сварка при помощи газовой горелки экономична, может быть использована без специального дорогостоящего оборудования, но требует от специалиста соответствующих навыков. Из-за тенденции все более широкого применения од-номодовых каналов передачи данных этот способ монтажа применяется все реже и реже.

Сварка оптоволокна в поле электрического разряда

В настоящее время большинство сварочных аппаратов используют электрический разряд (электрическую дугу) для нагрева и сваривания опто-волокон. Использование сварочного аппарата позволяет получить качественное, долговечное соединение при невысоких затратах. Важным критерием также является быстрота работы и легкость освоения технологии сварки – компании могут отказаться от услуг сторонних организаций.

Недостатком описываемого способа является необходимость покупки недешевого оборудования – современный сварочный аппарат стоит от 10 000 долл. и выше, что влечет за собой «замораживание» оборотных средств и высокие амортизационные отчисления, большую стоимость ремонтных работ (при случаях, выходящих за рамки гарантийного обслуживания). При использовании аппарата для сварки оптических волокон необходимо соблюдение условий по температуре окружающей среды, влажности, отсутствию вибрации. Для обеспечения высокого качества сварочных работ необходимо обеспечить напряжение питания от сети переменного тока с незначительными отклонениями от номинала.

Сварка оптоволокна при помощи лазера

Наилучший результат дает сварка аппаратами, в которых нагрев осуществляется при помощи мощного лазерного излучения. В отличие от электрической дуги на лазерный луч не влияют магнитные поля – это обеспечивает более стабильное формирование сварочного шва, что позволяет получать сварной шов с малыми размерами вносимых потерь (0,05 дБ и менее).

Из-за высокой стоимости оборудования и относительно больших размеров сварочных аппаратов данный метод применяется только при создании высокоскоростных ВОЛС и при построении систем передачи данных на большие расстояния, когда требуется соединение с исключительно низкими потерями.

Соединение оптических волокон методом склеивания

Для монтажа оптических волокон при помощи клеевых соединений используют совмещение оптических волокон в фиксирующих устройствах с последующим склеиванием. В качестве устройств фиксации чаще всего используют тонкие трубки, внутренний диаметр которых чуть больше размера оптических волокон (капилляры). В качестве фиксирующего устройства также применяется пластина с V-образной канавкой или несколько стержней (обычно три) в качестве направляющих.

Технология получения соединения методом склеивания с использованием капиллярной трубки предусматривает выполнение следующих этапов:

  • зачистка кабеля, удаление защитных оболочек;
  • подготовка торцевых поверхностей соединяемых оптических волокон;
  • ввод окончаний оптических волокон в капилляр;
  • наполнение капилляра или места соединения иммерсионной жидкостью, гелем или клеем;
  • регулирование соединения, юстировка оптических волокон;
  • введение в капилляр клеевого состава;
  • цементирование клеевого состава при помощи ультрафиолетового излучения;
  • нанесение защитных оболочек кабеля, либо укладка в сплайс-пластину, кассету.

Клеевой состав, используемый для сращивания оптических волокон, обеспечивает фиксированное положение соединенных оптических волокон, защищает место сращивания от воздействия окружающей среды, гарантирует прочность сростка при воздействии нагрузок в осевом направлении. Основное достоинство клеевого метода соединения – оперативность, компактность и низкая стоимость набора для монтажа, возможность проведения ремонтных работ в труднодоступных местах. Соединение обладает высокой механической стойкостью к внешним нагрузкам. При склеивании не происходит деформация оптических волокон, что позволяет добиться малых потерь в местах стыка. Но высокая чувствительность к изменениям температуры и воздействию влажности ограничивает срок службы соединения, что в итоге не позволило широко распространиться данному методу. В настоящее время он уступил свои позиции методу соединения оптических волокон с помощью механических соединителей.

Механические соединители оптических волокон

Механические соединители разрабатывались как более дешевый и быстрый способ сращивания оптических волокон. На сегодняшний день сварка при помощи сварочного аппарата позволяет выполнять соединение оптических волокон с минимальными потерями. Но зачастую бывают ситуации, когда на объекте нет сварочного аппарата или применение даже малогабаритных устройств затруднено (при ремонте отрезка ВОЛС внутри ограниченного объема пространства).

Механические соединители представляют собой конструкцию для сращивания оптических волокон, которая имеет вытянутую форму и канал для световодов. Канал заполняют тиксотропным гелем для защиты от попадания пыли и влаги, при этом гель обладает иммерсионными свойствами – его показатель преломления близок к показателям сердцевины оптических волокон, что снижает потери на стыке. Волокна запускают в соединитель с двух сторон, юстируют и после их соприкосновения дополнительно фиксируют с помощью защелок различных форм и конструкций. Процедура монтажа включает в себя следующие операции:

  • разделка кабелей;
  • снятие буферных покрытий соединяемых оптических волокон на участках длиной, рекомендуемой производителями оптических соединителей конкретного типа;
  • скалывание оптических волокон;
  • проверка качества скола волокон;
  • введение соединяемых волокон в отверстия с направляющими;
  • позиционирование волокон в соединителе для достижения оптимальных параметров соединения;
  • фиксация оптических волокон в соединителе;
  • тестовые измерения соединения.
Читайте также:  Способы приготовления пекинской капусты

Величина затухания сигнала при таком методе соединения больше, чем при сварке оптоволокна, – даже у опытного монтажника они могут составлять выше 0,1 дБ (допустимыми считаются потери до 0,3 дБ).

К преимуществам механических соединителей оптических волокон относят более широкий диапазон условий, при которых возможно проведение качественного монтажа, компактность и низкая стоимость набора для монтажа. Механические соединители некоторых производителей допускают многоразовое использование. Вносимые потери при этом методе соединения волокон меньше, чем при использовании пары волоконно-оптических вилок и адаптера. Со временем из-за смещения волокон внутри соединителя или высыхания иммерсионного геля потери в месте соединения волокон могут увеличиться, поэтому данный тип соединения рекомендуется использовать для временного восстановления повреждений на оптических линиях. Впрочем, известны случаи, когда сросток, сделанный при помощи механических соединений, работал 3 года и более и параметры передачи сигнала полностью устраивали собственника объекта.

Источник

ВИДЫ СОЕДИНЕНИЙ ОПТИЧЕСКИХ КАБЕЛЕЙ

Одним из ответственных решений при проектировании является выбор вида соеди­нения ОВ кабеля.

Соединение ОВ может быть

Выбор вида соединения ОВ и качество выполнения является одним из определяю­щих факторов дальности и качества связи по ОК.

Для разъемного соединения применяют механическое соединение при помощи:

· соединительных втулок, муфт (розеток);

· разъемных соединителей (аналог штекер­ного соединения);

· металлических (прецизионных) наконеч­ников.

Для неразъемного соединения ОВ при­меняют

· электродуговую сварку или

Соединители ОВ представляют собой уст­ройства, предназначенные для точного со­вмещения и соосности торцов ОВ, фиксации соединяемых волокон и для механической защиты стыка (сростка) волокон.

Соединительные муфты применяют для защиты места соединения (сростка) ОВ от механических воздействий. Наличие силового элемента (металлической платы) в муфте по­зволяет надежно фиксировать место стыка (спая) ОВ, исключать растягивающие воздей­ствия как на место стыка (спая), так и на волокно.

При соединении ОВ возникают потери передаваемого сигнала, которые условно разделяют на две группы.

К первой группе относятся потери, вы­зываемые радиальным смещением осей свето­водов (ОВ), угловым рассогласованием, зазорами между торцами ОВ, качеством обработки поверхности торцов соединяемых ОВ (наличием царапин, сколов, микронеров­ностей, неперпендикулярностью торца оси ОВ).

Ко второй группе относятся потери, вы­званные различием числовых апертур сты­куемых ОВ, диаметров сердечников, некон­центричностью и эллиптичностью соеди­няемых ОВ.

После каждого соединения необходимо проводить измерение затухания сигнала.

Степень затухания сигнала определяется коэффициентом затухания

где d— коэффициент затухания (ослабления), дБ/км;

Р0 мощность, введенная в начало кабеля;

Р1 — мощность на конце кабеля;

l — длина кабеля, км.

Подготовка концов ОВ к их соеди­нению состоит из следующих операций:

· удаление защитной оболочки;

· удаление покрытия с оптического волок­на;

· обработка торца ОВ (скол, шлифование, полирование и т. п.).

Для разъемных соединений качественная обработка торца (шлифование и полирование) возможна только в условиях мастерских с необходимым оборудованием.

Для неразъемных соединений, выпол­няемых методом электродуговой сварки, необходимо выполнить качественное удале­ние покрытия с ОВ и произвести скол так, чтобы на торце не было трещин, выступов и впадин.

Для неразъемных соединений, выполняе­мых клеевым методом, кроме выполнения условий сварки необходимо добиваться, что­бы после скола ОВ торец волокна был аб­солютно плоским и строго перпендикулярен оптической оси волокна.

Контроль за качеством обработки торца выполняют при помощи микроскопа «Биолам Р-4» или МБ-9.

Источник

Способы выполнения неразъемных соединений ов это

Проблемы соединения волоконных световодов приобрели особую актуальность при разработке технологии их промышленного применения. Выбор способа сращивания зависит от условий применения волоконной оптики.

Очевидно, что значительные преимущества при использовании волоконно-оптических технологий в телекоммуникационной отрасли, связанные с улучшением целого ряда технико-экономических показателей (возрастанием скорости передачи информации, увеличением длины регенерационного участка, уменьшением массогабаритных характеристик кабелей, экономией цветных металлов и др.), предопределят в будущем широкое внедрение волоконной оптики при построении линий связи различных уровней. Однако необходимо было разработать методики сращивания волоконных световодов, обеспечивающие высокие качественные и вместе с тем достаточно технологичные и доступные показатели, чтобы сделать возможным применение этих световодов не только в стационарных, но и в полевых условиях.

Строительная длина волоконно-оптического кабеля на практике устанавливается, исходя из ряда факторов. Прокладка больших длин кабеля неудобна вследствие необходимости сматывания с барабана и манипуляций с кабелем как во время прокладки в полевых условиях (при пересечении других подземных коммуникаций), так и в городских условиях (при прокладке в кабельную канализацию). Прокладывая кабель с помощью кабелеукладочной техники, также возникают неудобства, связанные с манипуляциями большими длинами, если для погрузочно-разгрузочных работ приходится использовать специализированную технику. Особенно остро стоит проблема манипуляции строительными длинами с большой удельной массой при прокладке глубоководных морских кабелей и кабелей для прибрежной зоны. Из-за необходимости инсталляции кабелей максимально возможной длины для их транспортировки по суше используются спаренные железнодорожные платформы, на которых кабели выкладываются в форме «8», а не на кабельные барабаны. Таким образом кабель транспортируется по суше до погрузки на судно.

Для соединения оптических волокон разработаны два способа соединений: разъемные и неразъемные. Неразъемные соединения оптических волокон осуществляются методом сварки, методом склеивания, а также с помощью механических соединителей. Для создания разъемных соединений оптических волокон используются оптические коннекторы.

Соединения оптических волокон с помощью сварки

Соединение оптических волокон с помощью сварки является сегодня наиболее распространенным методом получения неразъемных соединений. Благодаря в достаточной мере совершенной технологии этот метод позволяет получать качественные соединения с низкими показателями вносимых потерь (порядка 0,1-0,15 дБ), что обуславливает его применение на линиях связи, где этот показатель входит в приоритетные — магистральные, зоновые и другие — высокоскоростные ВОЛС.

Сваривание оптических волокон предусматривает оплавление концов волоконных световодов путем помещения их в поле мощного источника тепловой энергии, как, например, поле электрического разряда, пламя газовой горелки, зона мощного лазерного излучения.

Каждый из перечисленных методов имеет свои достоинства и недостатки. Достоинством метода сварки с помощью лазера можно считать возможность получения чистых соединений из-за отсутствия в них сторонних примесей, и, как следствие, достаточно малых вносимых потерь (0,1 дБ и менее). Как правило, в качестве источника лазерного излучения высокой мощности (до 5 Вт) используются газовые лазеры на СО2.

К достоинствам метода сварки с помощью газовой горелки следует также отнести возможность получения соединений оптических волокон, отличающихся высокой прочностью мест сростков. В качестве источника пламени используют смесь пропана с кислородом или соединение кислорода, хлора и водорода. Этот метод распространен по большей части для сварки многомодовых оптических волокон.

Основным достоинством сварки в поле электрического разряда является быстрота и технологичность. Этот метод в настоящее время приобрел наибольшую популярность для сварки одномодовых световодов.

Аппараты для сварки оптических волокон можно классифицировать следующим образом: по способу юстировки свариваемых концов оптических волокон (в зависимости от геометрических размеров сердцевин или от потерь мощности светового сигнала, распространяющегося через место сварки); по способу проведения операций (ручные или автоматические); по типу устройства контроля (микроскоп, монитор на жидких кристаллах); по количеству оптических волокон, которые могут быть сварены одновременно (одно- и многоволоконные).

Схема сварки отдельного оптического волокна и ленточного элемента в поле электрического разряда

При сварке оптических волокон в поле электрического разряда можно выделить такие технологические этапы:

  • подготовка торцевых поверхностей соединяемых оптических волокон;
  • надевание защитной термоусаживаемой гильзы на одно из соединяемых волокон;
  • установка подготовленных концов оптических волокон в направляющие системы сварочного аппарата;
  • юстировка свариваемых оптических волокон;
  • предварительное оплавление торцов оптических волокон (fire cleaning) с целью ликвидации микронеровностей, возникающих в
  • процессе скалывания;
  • непосредственное сваривание оптических волокон;
  • предварительная оценка качества сварки;
  • защита места сварки с помощью термоусаживаемой гильзы;
  • окончательная оценка качества сварки с помощью рефлектометра.
Читайте также:  Способ приватизации муниципального имущества конкурс

Существует два способа юстировки. Первый базируется на выравнивании сердцевин свариваемых оптических волокон по их геометрическим размерам (Profile Alignment System PAS) с помощью боковой подсветки концов свариваемых волокон.

Второй способ основан на выравнивании сердцевин оптических волокон по принципу минимизации потерь тестового светового сигнала, распространяющегося через место сварки.

Что касается активной юстировки, то известно три метода.

Первый заключается в использовании оптического излучателя и приемника на противоположных концах оптических волокон, подлежащих сварке. Информация от приемника передается персоналу, производящему сварку.

Второй метод сводится к использованию оптического передатчика на дальнем конце и детектора в точке соединения. Тестовый оптический сигнал выводится из соединяемого оптического волокна на небольшом (примерно 0,5 м) расстоянии от места сварки на изгибе и детектируется приемником, оборудованным измерителем оптической мощности.

Третий метод реализует LID (Local Injection and Detection) — процедуру юстировки, ограниченную исключительно местом соединения. В основу этого метода положено введение тестового оптического сигнала в сердцевину одного из соединяемых оптических волокон и поиск его в сердцевине второго соединяемого волокна путем изгиба.

Цикл сварки оптического волокна автоматического сварочного аппарата

Метод LID является наиболее эффективным, поскольку, в отличие от метода PAS, качество сварного соединения в большей мере зависит от сварочного аппарата, а не от индивидуального мастерства персонала. В современных сварочных аппаратах для управления процессами юстировки и сварки используются микропроцессоры, с помощью которых возможна оптимизация процесса сварки для получения минимальных (менее 0,1 дБ) потерь в местах соединений оптических волокон.

В процессе оплавления оптические волокна подаются одновременно для предотвращения укорачивания одного из них в месте сварки. Операции оплавления и сваривания, как правило, выполняются автоматически. В современных автоматических сварочных аппаратах для снятия механического напряжения в точке соединения оптических волокон предусмотрен режим прогревания места стыка по окончании процесса сварки. Такой режим называется «режимом релаксации».

Цикл плавления (длительность подачи и сила тока как для предварительного оплавления, так и для сварки и релаксации) для оптических волокон различных производителей и типов различны. Типичный цикл сварки приведен на рисунке.

Некоторые сварочные аппараты, кроме рассмотренных выше способов контроля качества места сварки, используют еще и тест на растяжение во избежание нарушения соединения во время манипуляций при выкладке сростков в кассету, а также в дальнейшем, в процессе эксплуатации. Соединенное оптическое волокно прочно закреплено в направляющих платформах (которые используются при юстировке). Под контролем микропроцессора по завершении этапа сварки эти направляющие платформы расходятся в противоположные стороны, образуя строго нормированное продольное усилие на растяжение, приложенное к месту стыка. Считается, что стык, прошедший такое тестирование, более надежен и выполнен более качественно. При невозможности получения стыка, способного пройти этот тест, но удовлетворяющего по параметрам передачи, эту опцию можно отключить.

Схема этапов сварки оптических волокон с минимизацией потерь и компенсацией смещения

Особо следует отметить сварку ленточных элементов (ленточных волоконно-оптических кабелей, отличающихся большим количеством оптических волокон). Эту операцию можно проводить, только применяя полностью автоматический сварочный аппарат, с помощью которого можно соединить до 12 оптических волокон приблизительно за 3 минуты, причем средний уровень потерь составит около 0,1-0,15 дБ. Однако для сваривания ленточных элементов необходим опытный, хорошо подготовленный персонал.

Во время сварки оптические волокна размещаются с соответствующим смещением от оси электродов, что обеспечивает равномерное нагревание. До начала процесса сваривания и по его завершении проверяется смещение оптических волокон, состояние торцевых поверхностей, а также деформация.

При сваривании ленточных элементов необходимо, кроме основных процессов, рассмотренных ранее, провести еще три технологические операции: устранить расхождения торцов соединяемых оптических волокон, плавление всех волокон выполнить одновременно с одинаковой температурой, в процессе предварительной оценки измерить уровень вносимых потерь рефлектометром. Если оказалось, что результаты не отвечают требованиям, процесс сварки повторяют.

Как показывает практика, предварительная оценка качества сварных соединений оптических волокон, базирующаяся на методе РАС, может содержать погрешность в диапазоне 5-1000%, поэтому окончательный вывод о качестве сварного соединения стоит делать после измерений рефлектометром.

По мере совершенствования качества сварочного оборудования и технологии сварки возрастают возможности получения сварных соединений оптических волокон высокого качества. Потери на сварных соединениях зависят от нескольких факторов: опыта персонала, геометрических погрешностей свариваемых оптических волокон, а также от материалов, из которых изготовлены волокна. Особенно часто проблемы возникают при сварке оптических волокон различных производителей. Дело в том, что оптические волокна различных производителей изготавливаются с использованием принципиально отличающихся друг от друга технологических процессов. В результате материал оптических волокон — кварцевое стекло — не является идентичным в волокнах различного происхождения, несмотря на то, что параметры оптических волокон, указанные в спецификациях фирм-производителей, отличаются незначительно.

Факторами, определяющими свойства стекла, являются технология изготовления и качество материалов. Многочисленные исследования показали, что тысячные доли процента примесей в кварцевом стекле оказывают большее влияние, чем добавки в десятки процентов тех же компонентов к многокомпонентным стеклам.

Для сварки наибольшее влияние имеют следующие характеристики: плотность, коэффициент теплового расширения, показатель преломления, вязкость и механические характеристики. Эти параметры определяют оптические потери в местах сращивания и должны приниматься во внимание при использовании оптических волокон, произведенных по различным технологиям, в пределах одного элементарного кабельного участка ВОЛС. Особое внимание следует уделять идентификации оптических волокон в кабеле по типу, производителю и технологии изготовления.

Аппарат для сварки оптических волокон FSM 30S производства Fujikura

Более совершенные аппараты для сварки оптических волокон содержат программы, оптимизирующие процесс сварки для оптических волокон различных типов и различных производителей, однако на практике нередки ситуации, когда, используя стандартные программы, невозможно получить качественную сварку. В этих случаях необходимо самостоятельно корректировать параметры процесса (время и ток, подаваемый на электроды) для достижения оптимальных результатов.

Наиболее часто сварка оптических волокон различных производителей производится при оконцовке оптических волокон пигтейлами, а также при ремонтно-восстановительных работах, если эксплуатационный запас кабеля израсходован, и приобретение полностью идентичного кабеля невозможно (к примеру, по причине снятия с производства оптического волокна такого типа, который использовался первоначально) или экономически нецелесообразно.

Аппарат для сварки оптических волокон FSM.05SVHII производства Fujikura

В общем виде величина потерь в местах сварных соединений может быть представлена как суммарная величина: Dобщ = Dор + Dдм + Dую + Dнм + Dрпп, где: Dобщ — суммарная величина потерь в сварке; Dор — потери из-за осевого рассогласования модовых полей равного диаметра; Dдм — потери из-за разницы диаметров модовых полей; Dую — потери от погрешности угловой юстировки осей оптических волокон; Dнм — потери, обусловленные не-круглостью модовых полей; Dрпп — потери из-за разницы показателей преломления.

Знаки составляющих зависят от направления излучения.

При работе с современным сварочным оборудованием значение Dор стремится к нулю.

Изучение параметров и характеристик различных одномодовых оптических волокон показывает, что разброс величины диаметра модового поля для l = 1310.1330 нм или l = 1500. 1550 нм может составлять от 10,5 до 21,7% (9,2 0,5 мкм). Такое рассогласование приводит к появлению потерь от 0,05 дБ до 0,25 дБ (с положительным знаком, когда излучение проходит из волокна с большим диаметром в волокно с меньшим диаметром, и отрицательным — в противоположном направлении). Эти потери будут иметь место, даже если аппарат расположит соосно два волокна с разными диаметрами сердцевин, у которых эксцентриситет пренебрежительно мал. Обычно разброс величины модового поля оптического волокна не превышает 14%, таким образом, величина этой составляющей — не более 0,1 дБ.

Составляющая Dую практически не компенсируется современным сварочным оборудованием. Установлено, что углы между осями сердцевин 0,5°; 1°; 1,5°; 2° вызывают приращение потерь соответственно в 0,08; 0,34; 0,77 и 1,5 дБ. Таким образом, благодаря надлежащей подготовке торцов соединяемых оптических волокон при скалывании можно уменьшить потери — необходимо обеспечить наименьший (не более 0,5°) угол между плоскостями торцов оптических волокон. В этом случае величина потерь не превысит 0,08 дБ.

Читайте также:  Коллективные способы защиты своих прав

Составляющая Dнм учитывает влияние некруглости модового поля. По приблизительным оценкам она равна 0,05 дБ.

При соединении сваркой оптических волокон, имеющих неконцентричность модового поля, часто возникает нарушение юстировки сердцевин вследствие действия сил поверхностного натяжения. Это нарушение можно минимизировать следующими способами:

  • сокращение времени плавления за счет неполного сваривания оптических волокон или же сокращение длины свободного конца оптического волокна в сварочном устройстве, чтобы концы оптических волокон в процессе сварки могли перемещаться на очень малое расстояние;
  • использование компенсационных программ, таких как управление смещением сердцевины с помощью метода умышленного смещения осей.

Такой режим получил название RTC (Real Time Control). В этом режиме после юстировки сердцевин свариваемых оптических волокон и проведения процедуры предварительного оплавления происходит компенсация поперечного смещения сердцевин в сторону, противоположную производной расхождения.

Сварка оптических волокон осуществляется посредством чередования коротких импульсов тока высокой интенсивности с импульсами тока низкой интенсивности (релаксационными импульсами). При этом после сваривания в электрическом поле импульса высокой интенсивности в поле релаксационного импульса происходит перемещение оптических волокон под действием поверхностного натяжения. Количество чередующихся импульсов зависит от смещения сердцевин оптических волокон, которое постоянно контролируется сварочным аппаратом; как правило, количество импульсов не превышает 2-3.

Весьма существенное влияние на общую величину потерь, если свариваются оптические волокна с разными показателями преломления (N) сердцевины, может оказать составляющая Dрпп. Эта составляющая учитывает потери мощности оптического сигнала в результате несоблюдения условия полного внутреннего отражения на месте стыка двух оптических волокон, у которых показатели преломления сердцевин имеют различия. В этом случае часть оптического сигнала проникает через оболочку волокна и рассеивается. Ситуация усугубляется многократным отражением луча от границы «сердцевина/оболочка», каждое из которых (отражений) служит источником потери мощности. На практике нередки случаи, когда даже многократные повторные сварки не позволяют добиться малой величины потерь.

Наибольший вклад в суммарную величину потерь вносят потери от погрешности угловой юстировки осей оптических волокон и потери из-за разницы показателей преломления.

Международная электротехническая комиссия предлагает в качестве типичной характеристики сварного соединения оптических волокон, полученного в полевых условиях, величину вносимых потерь, равную 0,2 дБ (IEC 1073-1). При современном развитии технологии сварки оптических волокон этот показатель вполне достижим даже тем персоналом, который не обладает значительным опытом в этой области.

Соединение оптических волокон методом склеивания

Практически одновременно с методом сварки был разработан метод склеивания оптических волокон. Для получения клеевых соединений используют совмещение и фиксацию оптических волокон: в капилляре, в трубке с прямоугольным сечением, с помощью V-образной канавки и с помощью трех стержней в качестве направляющих. Оптические волокна соединяются поодиночке.

Технология получения таких соединений состоит из следующих этапов:

  • подготовка оптических волокон к соединению (очистка, снятие буферных покрытий, скалывание);
  • ввод оптического волокна в капилляр;
  • наполнение иммерсионной жидкостью, гелем или клеем;
  • регулирование соединения, юстировка оптических волокон;
  • нанесение адгезивного вещества;
  • цементирование адгезивного вещества с помощью ультрафиолетового излучения.

Клей, используемый для оптических волокон, должен иметь коэффициент преломления, близкий к коэффициенту преломления волокон. Он должен обеспечивать фиксированное положение соединенных оптических волокон, защищать место сращивания от воздействий окружающей среды, гарантировать прочность сростка при воздействии нагрузок в осевом направлении. К достоинствам этого метода следует отнести оперативность и отсутствие деформации сердцевин соединяемых оптических волокон. Это способствует тому, что в области стыка — малые потери, обеспечиваются хорошие механические свойства и т.п. Однако ограниченный срок службы и нестабильность во времени, а также весьма высокая чувствительность к повышению температуры и воздействию влажности являются факторами, сдерживающими распространение этого метода получения неразъемных соединений. В настоящее время он уступил свои позиции методу соединения оптических волокон с помощью механических соединителей.

Механические соединители оптических волокон

Механические соединители оптических волокон разрабатывались как более дешевый и быстрый способ сращивания оптических волокон. Применение аппарата для сварки оптических волокон сопряжено с необходимостью соблюдения ряда условий: для работы используется помещение, параметры которого (температурный диапазон, влажность, давление, вибрации и проч.) соответствуют требованиям производителей сварочного оборудования; также необходима организация питания от сети переменного тока с достаточно жестко регламентированными параметрами. При стоимости комплекта оборудования для сварки оптических волокон, составляющей десятки тысяч долларов США, амортизационные отчисления, а также техническое обслуживание и ремонт являются довольно дорогостоящими.

Механический соединитель Corelink производства AMP

Достаточно высокие требования предъявляются также к персоналу, производящему работы по сварке оптических волокон. Часто этими же лицами производится наладка и обслуживание аппаратов для сварки оптических волокон (очистка направляющих поверхностей и зажимов, замена электродов и проч.), для чего требуются специалисты с высоким уровнем квалификации.

Механический соединитель ленточных элементов оптических волокон производства Lucent Technologies

Механический соединитель Fibrlok II производства 3M

Механический соединитель Fibrlok производства 3M

Всех этих сложностей можно избежать, применяя механические соединители оптических волокон. Конструкция оптических соединителей относительно проста. Основными узлами являются направляющие для двух оптических волокон и устройство фиксации волокон. Внутреннее пространство заполняется тиксотропным гелем для защиты открытых участков оптических волокон от воздействия влаги. Одновременно гель обладает иммерсионными свойствами — его показатель преломления близок к показателю преломления сердцевины волокна.

Процедура монтажа оптических соединителей является частью процедуры монтажа промежуточного или оконечного устройства — кабельной муфты, бокса или стойки. Размеры и форма оптических соединителей позволяют устанавливать их в кассету муфты или бокса аналогично сросткам оптических волокон, полученных путем сварки.

Процедура монтажа включает в себя следующие технологические операции:

  • разделка кабелей;
  • очистка оптических волокон от гидрофобного геля (при его наличии);
  • снятие буферных покрытий соединяемых оптических волокон на участках длиной, рекомендуемой производителями оптических соединителей конкретного типа;
  • скалывание оптических волокон;
  • проверка качества скола волокон;
  • введение соединяемых волокон в отверстия с направляющими;
  • позиционирование волокон в соединителе для достижения оптимальных параметров соединения;
  • фиксация оптических волокон в соединителе;
  • тестовые измерения соединения.

Особое место среди оптических механических соединителей занимает RMS (Rotary Mechanical Splice) как наиболее сложный среди аналогов. Процесс его монтажа наиболее трудоемок, однако он позволяет достичь наименьших потерь при соединении одномодовых волокон. В отличие от остальных соединителей, где величина потерь главным образом зависит от качества скола торцевых поверхностей оптических волокон, этот соединитель позволяет юстировать волокна простым вращением вокруг своей оси стеклянных втулок, удерживающих подготовленные оптические волокна, и добиваться наилучших результатов.

Механический соединитель RMS производства AT&T

Механический соединитель ленточных элементов оптических волокон производства Sumitomo

Механические соединители производства Fujikura

Следует отметить, что применение механических соединителей является наиболее быстрым способом соединения оптических волокон. При этом вносимое затухание практически не отличается от затухания, создаваемого сварным соединением. Достаточно устойчивое функционирование механических соединителей в процессе эксплуатации позволяет уже сегодня рекомендовать их для широкого внедрения на телекоммуникационных сетях с невысокими требованиями к качеству соединений, а также в случаях, когда использование аппарата для сварки оптических волокон технологически затруднено или вообще невозможно. В дальнейшем статистика технической эксплуатации, а также совершенствование материалов компонентов механических соединителей, вероятно, определит их более широкое применение для строительства телекоммуникационных волоконно-оптических линий различных уровней.

Обращает на себя внимание тот факт, что механические соединители оптических волокон условно допускают однократное использование, однако на практике встречаются ситуации их многократного применения. Производители гарантируют качество соединения оптических волокон при повторном монтаже соединителя не более 2-3 раз, однако при повторном наполнении внутреннего пространства иммерсионным гелем (в тех конструкциях, где это предусмотрено) такие соединители использовались многократно без ущерба для качества стыков. Некоторыми производителями механических соединителей разработаны механизмы фиксации, предусматривающие использование специального ключа для открытия фиксатора.

Сегодня использование механических соединителей наиболее удобно при проведении аварийного ремонта волоконно-оптическихлиний для технологической операции организации временной вставки.

Источник

Оцените статью
Разные способы