Биология. 6 класс
Конспект урока
Биология, 6 класс
Урок 9. Выделение у растений и животных
Перечень вопросов, рассматриваемых на уроке
- Как происходит удаление продуктов жизнедеятельности у растений и животных.
- Какие существуют механизмы и приспособления у растений и животных.
- Какое это имеет значение для организмов.
Выделение – процесс выведения из организма ненужных веществ, которые образовались в процессе обмена веществ.
*Протонефридии – органы выделения у плоских червей.
*Метанефридии – парные органы выделения большинства у большинства кольчатых червей.
*Мальпигиевы сосуды – органы, выполняющие функцию выделения у ряда наземных членистоногих.
Почка – основной орган выделительной системы позвоночных животных.
Листопад – процесс сбрасывания листвы растениями для удаления ненужных веществ и защиты от иссушения. Листопад у растений умеренного пояса происходит с наступлением зимы, а у растений субтропиков и тропиков – в засушливый период.
Основная и дополнительная литература по теме урока
- Биология. 5 – 6 класс. Линия жизни. / В. В. Пасечник, С. В. Суматохин, Г. С. Калинова, Г. Г. Швецов, З. Г. Гапонюк. – М.: Просвещение, 2018.
- Биология в схемах и таблицах / А. Ю. Ионцева, А. В. Торгалов.
- Введение в биологию. Неживые тела. Организмы: учеб. для уч — ся 5 – 6 кл. общеобразоват. учеб. заведений / А. И. Никишов. – М.: Гуманитар. изд. центр ВЛАДОС, 2012.
- Биология. Живой организм. 5 – 6 классы: учебник для общеобразовательных учреждений с приложением на электронном носителе / Л. Н. Сухорукова, В. С. Кучменко, И. Я. Колесникова. – М.: Просвещение, 2013.
- Биология. Обо всем живом. 5 класс: учебник / С. Н. Ловягин, А. А. Вахрушев, А. С. Раутиан. – М.: Баласс, 2014.
Теоретический материал для самостоятельного изучения
На уроке будут раскрыты особенности процесса выделения веществ у растений и животных.
Удаление многих ненужных организму веществ у животных осуществляется через выделительную систему. А, как и что выделяют растения?
Растения, как и все живые организмы, обладают таким важнейшим свойством, как обмен веществ. К сожалению, еще широко распространен взгляд на растения как на поглотителей элементов минерального питания, в которые «что попало, то пропало». На самом деле растения активно и пассивно выделяют большое количество органических и минеральных веществ, в частности:
а) листья выделяют кислород, углекислый газ, транспирационную воду, летучие метаболиты (например, эфирные масла), ряд минеральных веществ;
б) дождевые воды, стекающие по листьям и стволам, вымывают из листьев значительное количество органических и минеральных веществ;
в) корни растений выделяют значительное количество продуктов фотосинтеза, которые используются микрофлорой ризосферы и симбиотическими организмами (микоризные грибы, азотфиксирующие бактерии и актиномицеты); корневые выделения содержат сахара, органические кислоты и ряд минеральных соединений;
г) перед отмиранием отдельных органов растений (например, листьев перед листопадом) из них происходит реутилизация («откачка») необходимых растению веществ (чаще всего соединений азота и фосфора) и накопление в отмирающих органах многих балластных веществ;
д) некоторые растения засоленных почв (тамариски, кермеки) способны выделять избыток солей в виде солевого раствора через особые «железки» на листьях;
е) как защитную реакцию растений можно рассматривать выделение смол, млечного сока и других веществ и ответ на травмирование их организмов;
ж) наконец, многие растения выделяют нектар благодаря имеющимся у них специальным «железкам» – нектарникам.
Примеры и разбор решения заданий тренировочного модуля
Задание 1. Выделите цветом правильные суждения.
- В процессе эволюции животного мира органы выделения появились на довольно поздних этапах.
- У губок и кишечнополостных специализированных органов нет и выделения из организма конечных продуктов обмена осуществляется путем диффузии через поверхность тела.
- Первые специализированные органы выделения – протонефридии появляются у кольчатых червей.
- Это разветвленная трубочка, которая открывается на поверхности тела порой.
- У кольчатых червей, которые ведут водный образ жизни, функционируют протонефридии.
- Они имеют вид трубок, которые одним концом открываются в полость, а противоположным концом – наружу.
- Органами выделения наземных беспозвоночных (паукообразных, насекомых) есть зеленые железы (мальпигиевы сосуды) количеством от двух до нескольких сотен.
Правильный вариант ответа:
- В процессе эволюции животного мира органы выделения появились на довольно поздних этапах.
- У губок и кишечнополостных специализированных органов нет и выделения из организма конечных продуктов обмена осуществляется путем диффузии через поверхность тела.
- Первые специализированные органы выделения — протонефридии появляются у кольчатых червей.
- Это разветвленная трубочка, которая открывается на поверхности тела порой.
- У кольчатых червей, которые ведут водный образ жизни, функционируют протонефридии.
- Они имеют вид трубок, которые одним концом открываются в полость, а противоположным концом – наружу.
- Органами выделения наземных беспозвоночных (паукообразных, насекомых) есть зеленые железы (мальпигиевы сосуды) количеством от двух до нескольких сотен.
Задание 2. Заполните пропуски в таблице. Сопоставьте органы выделения с группами животных и их представителями.
Источник
Способы выделения веществ у растений.
У растений, так же как у животных, выделение веществ может быть пассивным и активным. Пассивное выделение продуктов обмена веществ по градиенту концентрации называется экскрецией, активное выведение веществ — секрецией. В процессах секреции обязательно участие активного транспорта веществ, на что затрачивается метаболическая энергия.
Как и у животных, у растений различают три способа выделения веществ из клетки: мерокриновую, апокриновую и голокриновую секрецию.
1. Мерокриновый тип секреции включает в себя две разновидности : а) эккриновую (мономолекулярную) секрецию через мембраны, осуществляемую активными переносчиками или ионными насосами; б) гранулокриновую секрецию — выделение веществ в «мембранной упаковке», т. е. в пузырьках (везикулах), секрет которых освобождается наружу при взаимодействии пузырька с плазмалеммой или поступает во внутренние компартменты клетки (в вакуоль).
2. Апокриновая секреция осуществляется с отрывом вместе с секретом части цитоплазмы, например с отрывом головок у солевых волосков некоторых галофитов.
3. Голокриновой называется секреция, при которой в результате активного секреторного процесса вся клетка превращается в секрет. Примером может служить секреция слизи клетками корневого чехлика.
Процесс секреции у растений осуществляется специализированными клетками и тканями. Наряду с этим к секреции способна каждая растительная клетка, формирующая клеточную стенку. В мембранах всех клеток функционируют ионные насосы (Н+-помпа и др.) и механизмы вторичного активного транспорта.
У растений нет единой выделительной системы, свойственной животным. Выделяемые вещества могут накапливаться внутри клетки (в вакуолях), в специальных хранилищах (например, в смоляных ходах) или выносятся на поверхность растения.
Наиболее изученным механизмом эккриновой секреции являются ионные насосы, прежде всего Н+-помпа . Меньше известно о физиологии гранулокриновой (везикулярной) секреции. Для животных объектов установлено, что секреция с участием везикул аппарата Гольджи — сложный многоступенчатый процесс, осуществляющийся в два этапа: 1) транспорт везикул, 2) слияние их с плазмалеммой. На первом этапе секреторные пузырьки направленно перемещаются от АГ к определенным участкам клеточной мембраны с помощью микротрубочек и актиновых микрофиламентов, для чего необходим АТР. На втором этапе везикулы слипаются (адгезия) с плазмалеммой при участии специальных белков (гликопротеинов типа лектина) и Са2 + . В результате происходит кластеризация адгезивного комплекса, обнажение липидных фаз в области контакта, слияние липидных бислоев везикулы и клеточной мембраны, прорыв контакта и расширение прорыва. Все это приводит к встраиванию мембраны секреторного пузырька в клеточную мембрану и выходу секрета на наружную поверхность плазмалеммы. На втором этапе секреторного процесса клетке необходим Са2 + . Роль кальция многообразна: участие в активации актомиозинового комплекса, снижение поверхностного отрицательного заряда контактирующих мембран, Са2+-зависимое фосфорилированием бранных белков с участием кальмодулина . Молекулярный механизм везикулярной секреции в растительных клетках не изучен. Однако известно, что и здесь необходим Саг + . По-видимому, процессы секреции у растений аналогичны тому, что известно для клеток животных.
Индукция поляризации у растений.
Важнейшее условие формообразования при развитии организма — поляризация биологических структур. Под полярностью подразумевают специфическую ориентацию процессов и структур в пространстве, приводящую к появлению морфофизиологических градиентов. Полярность определяет положений осей, обусловливающих форму клеток, органов и целого организма.
Полярность особенно наглядно представлена у растений, для которых характерна биполярная структура (главная ось: побег — корень). В физиологическом плане полярность проявляется у растений, в частности в процессах регенерации. У стеблевых и корневых черенков независимо от их положения в пространстве побеги развиваются с морфологически апикального (по отношению к верхушке стебля), а корни — с базального концов. Это объясняется тем, что ИУК, перемещаясь полярно, скапливается в морфологически нижнем конце черенка и индуцирует включение генетической программы корнеобразования.
Однако полярность не является изначальным и неизменно существующим свойством биологических объектов. У спор хвощей и папоротников полярность возникает лишь после определенных внешних воздействий, например, в условиях односторонне падающего света. При делении такой поляризованной споры освещенная сторона и соответствующая дочерняя клетка формируют заросток, а затененная -ризоид.
Механизм поляризации особенно подробно изучен у яйцеклетки бурой морской водоросли Fucus. До оплодотворения яйцеклетка фукуса лишена оболочки, ядро расположено в центре клетки и вначале не наблюдается сколько-нибудь заметной полярности в ее строении. После оплодотворения клетка опускается на дно, покрывается оболочкой и через некоторое время на ее нижней поверхности начинается образование ризоидного выступа. Первое деление яйцеклетки проходит в направлении, перпендикулярном образовавшейся оси. Верхняя клетка дает начало большей части таллома, нижняя — небольшой части таллома и ризоиду. По-видимому, сила гравитации в данном случае не представляет собой определяющего фактора в индуцировании полярности, так как при развитии яйцеклеток фукуса в темноте ризоиды могут расти в различных направлениях. При одностороннем освещении ризоид образуется с затененной стороны.
Предполагается, что вследствие электрической поляризации яйцеклетки в ее плазмалемме происходит латеральное электрофоретическое перемещение липопротеиновых компонентов с положительным или отрицательным зарядом (L. F. Jaffe et al. 1977—1980). Эти компоненты (ионные каналы, насосы, ферменты и др.) затем закрепляются на полюсах клетки с помощью микрофиламентов и микротрубочек цитоскелета, что необратимо фиксирует возникшую первичную поляризацию и определяет главную ось тела растения. При последующем делении яйцеклетки (плоскость деления перпендикулярна оси поляризации) ядра в дочерних клетках попадают в совершенно разные условия, возникшие в поляризованной цитоплазме, и вследствие этого начинают поставлять неидентичную генетическую информацию. Таким образом происходит дифференциация клеток.
Поляризация клеток у многоклеточных организмов вызывается самыми разными причинами: физико-химическими градиентами (величины осмотического давления и pH, концентрации 02, С02 и т. д.), гормональными, электрическими и трофическими градиентами, контактами с соседними клетками (контактная поляризация), механическим давлением и натяжением. Особое значение для целостности растения имеют те градиенты, которые создаются доминирующими центрами побега и корня — их верхушками. Колебательный характер этих градиентов — важное условие поддержания временной целостности растительного организма.
Вопрос
Теория «эффекта положения».
Каждая клетка многоклеточного организма подвергается определенным воздействиям со стороны физических, химических и физиологических градиентов и влиянию соседних клеток. В результате в клетках реализуются именно те потенции (дифференцировка, функциональная активность), которые соответствуют окружающим условиям. Эта теория получила название «эффекта положения».
Для того чтобы адекватно отвечать на изменение условий и сигналы, поступающие из окружающей среды (свойство раздражимости), каждая клетка постоянно тестирует (проверяет) свое местоположение.
Дж. Боннер (1965) для объяснения механизмов управления дифференцировкой предложил принцип морфогенетических тестов. Апикальная клетка делится в поперечном направлении на две дочерние. Каждая из них «определяет», является ли она верхушечной. Для апикальной клетки результатом будет продолжение деления, а вторая, субапикальная, тестирует величину группы окружающих ее клеток. Если группа мала, включается подпрограмма деления, функционирующая до достижения определенного программой количества клеток в этом участке апекса. После образования необходимого числа клеток каждая из них тестирует свое положение у поверхности или в глубине клеточной популяции. Если анализ показывает, что какие-то клетки находятся на поверхности группы, включается программа их дифференцировки в клетки эпидермальные. Остальные клетки, оказавшиеся не на поверхности, проводят тест на положение в глубине группы, в результате чего у расположенных в самой глубине индуцируется подпрограмма дифференцировки в клетки ксилемы, а у находящихся менее глубоко — подпрограмма образования флоэмы. Клетки, занимающие промежуточное положение, становятся камбиальными, т. е. делятся по замкнутому циклу, формируя элементы ксилемы и флоэмы.
У растений найдены рецепторы фитогормонов, позволяющие клеткам оценивать их состав и количество в окружающей среде. При культивировании растительных клеток в искусственной среде установлен «эффект массы». Единичная изолированная клетка редко переходит к делению. Чем гуще высеяны клетки (например, на поверхность питательного агара), тем большее их число начинает делиться. Если яйцеклетки фукуса помещены близко друг от друга, то ризоиды образуются в сторону центра группы («групповой эффект»). Это явление можно объяснить тем, что каждая яйцеклетка синтезирует и выделяет в окружающую среду ИУК, и концентрация этого фитогормона в центре группы оказывается более высокой, чем снаружи. Как уже говорилось, ауксин индуцирует у яйцеклеток фукуса образование ризоидов. Таким образом, тест на величину труппы клеток может быть опосредован концентрацией фитогормонов или других физиологически активных веществ, выделяемых клетками.
Прямое окисление сахаров.
Некоторые организмы способны окислять и нефосфорилированную глюкозу. Этот путь прямого окисления сахаров обнаружен у некоторых бактерий, грибов и животных, а также у фотосинтезирующих морских водорослей.
Из мицелия плесневого гриба Aspergillus niger может быть выделен ферментный препарат, способный окислять глюкозу в глюконовую кислоту.
Окисление глюкозы до глюконовой кислоты осуществляется— глюкооксидазой, содержащей в своем составе две молекулы FAD и 15% (от ее массы) углеводов.
Фермент отнимает два атома водорода от глюкозы, находящейся в пиранозной форме, и переносит его на молекулярный кислород. Перед окислением происходит превращение (мутаротация) ос-глюкозы в ?-форму, Первичный продукт окисления — лактон глюконовой кислоты, который, гидратируясь неферментативным путем, превращается в глюконовую кислоту:
Если в процессе дыхания прямому окислению подвергаются и другие сахара, кроме глюкозы, то образуется целое семейство кислот, названных кислотами прямого (первичного) окисления сахаров. Глюкозооксидаза способна окислять только D-глюкозу. В этом отношении она отличается от D-гексозооксидазы, способной наряду с D-глюкозой окислять и другие гексозы (мальтозу, лактозу, целлобиозу) с образованием соответствующих альдоновых кислот.
Введенные в растительные клетки, эти кислоты используются в процессе дыхания. Из глюкуроновой и галактуроновой кислот в клетках может образоваться аскорбиновая кислота (витамин С).
Источник