Способы выделения полного квадрата
Описание метода выделения полного квадрата
§2. Выделение полного квадрата из квадратного трёхчлена
Описание метода выделения полного квадрата
Выражения вида 2 x 2 + 3 x + 5 , `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида a x 2 + b x + c , где a , b , c a, b, c – произвольные числа, причём a ≠ 0 .
Рассмотрим квадратный трёхчлен x 2 — 4 x + 5 . Запишем его в таком виде: x 2 — 2 · 2 · x + 5 . Прибавим к этому выражению 2 2 и вычтем 2 2 , получаем: x 2 — 2 · 2 · x + 2 2 — 2 2 + 5 . Заметим, что x 2 — 2 · 2 · x + 2 2 = ( x — 2 ) 2 , поэтому
x 2 — 4 x + 5 = ( x — 2 ) 2 — 4 + 5 = ( x — 2 ) 2 + 1 .
Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».
Выделите полный квадрат из квадратного трёхчлена 9 x 2 + 3 x + 1 .
Заметим, что 9 x 2 = ( 3 x ) 2 , `3x=2*1/2*3x`. Тогда
Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем
Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.
Разложите на множители квадратный трёхчлен 4 x 2 — 12 x + 5 .
Выделяем полный квадрат из квадратного трёхчлена:
2 x 2 — 2 · 2 x · 3 + 3 2 — 3 2 + 5 = 2 x — 3 2 — 4 = ( 2 x — 3 ) 2 — 2 2 .
Теперь применяем формулу a 2 — b 2 = ( a — b ) ( a + b ) , получаем:
( 2 x — 3 — 2 ) ( 2 x — 3 + 2 ) = ( 2 x — 5 ) ( 2 x — 1 ) .
Разложите на множители квадратный трёхчлен — 9 x 2 + 12 x + 5 .
— 9 x 2 + 12 x + 5 = — 9 x 2 — 12 x + 5 . Теперь замечаем, что 9 x 2 = 3 x 2 , — 12 x = — 2 · 3 x · 2 .
Прибавляем к выражению 9 x 2 — 12 x слагаемое 2 2 , получаем:
— 3 x 2 — 2 · 3 x · 2 + 2 2 — 2 2 + 5 = — 3 x — 2 2 — 4 + 5 = — 3 x — 2 2 + 4 + 5 = = — 3 x — 2 2 + 9 = 3 2 — 3 x — 2 2 .
Применяем формулу для разности квадратов, имеем:
— 9 x 2 + 12 x + 5 = 3 — 3 x — 2 3 + ( 3 x — 2 ) = ( 5 — 3 x ) ( 3 x + 1 ) .
Разложите на множители квадратный трёхчлен 3 x 2 — 14 x — 5 .
Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:
Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
Рассмотрим квадратный трёхчлен x 2 — x + 3 . Выделяем полный квадрат:
`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.
Найдите наибольшее значение квадратного трёхчлена — 16 x 2 + 8 x + 6 .
Выделяем полный квадрат из квадратного трёхчлена: — 16 x 2 + 8 x + 6 = — 4 x 2 — 2 · 4 x · 1 + 1 — 1 + 6 = — 4 x — 1 2 — 1 + 6 = = — 4 x — 1 2 + 7 .
При `x=1/4` значение квадратного трёхчлена равно 7 , а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее 7 . Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.
Разложите на множители числитель и знаменатель дроби `
Заметим, что знаменатель дроби x 2 — 6 x + 9 = x — 3 2 . Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.
x 2 + 2 x — 15 = x 2 + 2 · x · 1 + 1 — 1 — 15 = x + 1 2 — 16 = x + 1 2 — 4 2 = = ( x + 1 + 4 ) ( x + 1 — 4 ) = ( x + 5 ) ( x — 3 ) .
Данную дробь привели к виду `<(x+5)(x-3)>/(x-3)^2` после сокращения на ( x — 3 ) получаем `(x+5)/(x-3)`.
Разложите многочлен x 4 — 13 x 2 + 36 на множители.
Применим к этому многочлену метод выделения полного квадрата.
Разложите на множители многочлен 4 x 2 + 4 x y — 3 y 2 .
Применяем метод выделения полного квадрата. Имеем:
( 2 x ) 2 + 2 · 2 x · y + y 2 — y 2 — 3 y 2 = ( 2 x + y ) 2 — 2 y 2 = = ( 2 x + y + 2 y ) ( 2 x + y — 2 y ) = ( 2 x + 3 y ) ( 2 x — y ) .
Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `<8x^2+10x-3>/<2x^2-x-6>`.
Источник
∑ Некоторые алгебраические понятия — определения и работа с ними
Метод выделения полного квадрата
Итак, традиционно корни многочлена находят, разложив его на множители. Разложение на множители очень помогает в поиске корней, так как, если произведение равно нулю, то один из множителей равен 0. При разложении на множители помогает вынесение общего множителя за скобку (пожалуй, это первое, что следует делать при разложении на множители). Далее обычно происходит группировка (если нет общего множителя, или этого не достаточно). Это по аналогии можно назвать методом группировки: одночлены разделяются по группам, имеющим общий множитель. Далее в идеале появляется общий множитель у всего выражения, который можно вынести и продолжить разложение. Потом, используя формулы сокращённого умножения, можно закончить разложение.
Однако, есть ещё один приём, заслуживающий отдельного внимания, основанный на формулах квадрата суммы и разности. Метод выделения полного квадрата. Особенность этих формул в том, что в них есть квадраты двух выражений и их удвоенное произведение. Если найти что-то, отдалённо напоминающее квадрат суммы или разности, но без какой-то необходимой части, то её можно прибавить, а затем отнять, тем самым не меняя конечного значения выражения. Далее, свернув квадрат суммы/разности, обычно нужно применить ещё какую-то формулу (например, разности квадратов) или совершить какую-то последовательность действий, и многочлен разложится на множители.
Пример разложения на множители методом выделения полного квадрата: y 4 + 4 ⁢ x 4 = y 2 2 + 2 2 ⁢ x 2 2 + 2 × 2 ⁢ x 2 ⁢ y 2 — 2 × 2 ⁢ x 2 ⁢ y 2 = y 2 + 2 ⁢ x 2 2 — 4 ⁢ x 2 ⁢ y 2 = y 2 + 2 ⁢ x 2 — 2 ⁢ x ⁢ y ⁢ y 2 + 2 ⁢ x 2 + 2 ⁢ x ⁢ y
Метод выделения полного квадрата имеет много применений, связанных с квадратными уравнениями. Его можно применить к квадратному трёхчлену (общему виду квадратного уравнения). a ⁢ x 2 + b ⁢ x + c = a ⁢ x 2 + b a × x + c a = a ⁢ x 2 + b ⁢ 2 a ⁢ 2 ⁢ x + c a = a ⁢ x 2 + 2 ⁢ b 2 ⁢ a + c a ; метод выделения полного квадрата : a ⁢ x 2 + b ⁢ x + c = a ⁢ x 2 + 2 ⁢ b 2 ⁢ a + b 2 4 ⁢ a 2 — b 2 4 ⁢ a 2 + c a = a ⁢ x + b 2 ⁢ a 2 — b 2 4 ⁢ a 2 + c a = a ⁢ x + b 2 ⁢ a 2 — b 2 — 4 ⁢ a ⁢ c 4 ⁢ a
Великолепная иллюстрация к методу выделения полного квадрата из Wikimedia Commons О свойствах и некоторых полезных следствиях получившегося представления можно прочитать здесь. Это ещё одна удобная форма представления квадратичной функции.
Также метод выделения полного квадрата позволяет именно решать квадратные уравнения. Для этого есть хорошо определённый и вполне известный алгоритм (написан для a x ²+b x +c = 0).
- Разделить каждую часть на a — старший коэффициент (при квадрате).
- Вычесть из обеих частей свободный член c/a.
- Добавить с обеих сторон квадрат половины среднего коэффициента b/a (при x).
- Свернуть левую часть и упростить правую (если нужно).
- Произвести два линейных уравнения, приравнивая квадратный корень левой части к положительному и отрицательному квадратному корню правой.
- Решить получившуюся систему.
У многих квадратных уравнений есть более красивые и простые решения.
Пример нестандартного, но более интуитивного и быстрого решения:
x 2 + 14 ⁢ x + 45 = 0 x 2 + 14 ⁢ x + 45 + 4 — 4 = 0 x 2 + 14 ⁢ x + 49 — 4 = 0 x + 7 2 — 4 = 0 x + 7 2 — 2 2 = 0 x + 7 — 2 ⁢ x + 7 + 2 = 0 x + 5 ⁢ x + 9 = 0 x + 5 = 0 x + 9 = 0 x = — 5 x = — 9 Ответ: x ∈ -5 -9 .
Пример решения уравнения с использованием алгоритма: 4 ⁢ x 2 + 20 ⁢ x — 24 = 0 | × 1 4 x 2 + 5 ⁢ x — 6 = 0 | — — 6 x 2 + 5 ⁢ x = 6 | + 2.5 2 x 2 + 5 ⁢ x + 6.25 = 12.25 x + 2.5 2 = 12.25 x + 2.5 = 3.5 x + 2.5 = — 3.5 x = 1 x = — 6 Ответ: x ∈ 1 — 6 .
Формула корней полного квадратного уравнения
Решение квадратных уравнений с разложением на множители — это достаточно хороший способ решения. Однако, он далеко не единственный. Корни квадратного уравнения также можно вычислять по формуле (используя их зависимость от дискриминанта и коэффициентов — подробнее о дискриминанте и зависимости), но данная формула также выводится, используя описанный выше метод выделения полного квадрата (хотя, как и везде, точное следование заданному алгоритму необязательно, и есть другие (возможно более удобные) пути выведения формулы).
Начнём, как водится, с записи квадратного уравнения общего вида: a x ²+b x +c = 0. А затем, можно проделать над уравнением ряд действий, основанных на алгоритме.
a ⁢ x 2 + b ⁢ x + c = 0 | × 1 a x 2 + b a ⁢ x + с a = 0 x + b 2 ⁢ a 2 = b 2 4 ⁢ a 2 — c a x + b 2 ⁢ a 2 = b 2 — 4 ⁢ a ⁢ c 4 ⁢ a 2
Выражение b² — 4ac называется дискриминантом квадратного уравнения (подробнее о дискриминанте можно прочитать по ссылке выше). Его можно обозначать D.
Получается. x + b 2 ⁢ a = D ⁡ 4 ⁢ a 2 x + b 2 ⁢ a = — D ⁡ 4 ⁢ a 2 Используя свойство квадратного корня из дроби, получаем конечную формулу корней квадратного уравнения. x 1 = — b + D ⁡ 2 ⁢ a x 2 = — b — D ⁡ 2 ⁢ a Это называется основной формулой корней квадратного уравнения. Далее следовало бы обсудить как по дискриминанту определить вид корней и т.д., но это тоже описано по ссылке выше.
Соответственно при решении квадратных уравнений по формуле целесообразно поступать по данному алгоритму.
- Вычислить дискриминант.
- Сравнить дискриминант с нулём.
- Найти корни по формуле.
- Если дискриминант меньше 0, то уравнение не имеет корней в поле действительных чисел ℝ .
fedor1113
К остальным темам
Источник
Алгебра. 7 класс
Конспект урока
Выделение полного квадрата
Перечень рассматриваемых вопросов:
- Квадрат суммы.
- Квадрат разности.
- Преобразование многочленов.
- Выделение полного квадрата.
и уметь увидеть их в выражении.
- Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
- Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
- Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
- Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Вы познакомились с формулами сокращённого умножения и научились раскладывать по ним квадрат разности и квадрат суммы. На этом уроке вы узнаете, как выделить из многочлена полный квадрат.
Этот многочлен можно преобразовать следующим образом.
6а мы представим в виде удвоенного произведения двух множителей: 3 и a:
Далее применим формулу квадрата суммы для двучлена а +3.
Таким образом, получили равенство:
Представим 10у как удвоенное произведение 5 и у:
Применим формулу квадрата разности для двучлена
Выделение полного квадрата используется, например, при доказательстве неравенств или определения знака выражения. Например:
Доказать, что для любых чисел а и в верно неравенство
В левой части неравенства две переменных, поэтому разделим одночлены на две группы. Число 45 можно добавить в любую группу, например, в группу, где переменная b.
Сложим два полученных выражения. В результате получим сумму двух квадратов двучленов:
то и сумма этих выражений будет положительной либо равна нулю. Что и требовалось доказать.
Материал для углублённого изучения темы.
При выделении полного квадрата числа могут получаться не только целыми, но и дробными.
Разбор заданий тренировочного модуля.
Объяснение: число 6 не является квадратом целого числа, поэтому удобнее вынести его за скобку:
2. Представьте выражение в виде суммы квадратов:
Объяснение: разделим выражение на две группы. Число 50 можем присоединить к любой группе, например к группе, где переменная m.
Получим сумму квадрата двучлена m + 5 и числа 25:
Во второй группе представим 10n как удвоенное произведение 5 и n, прибавим и вычтем 25:
Получим сумму квадрата двучлена n + 5 и числа -25:
Источник