Методы выделения чистых культур аэробных и анаэробных бактерий.
Выделение чистых культур аэробов занимает, как правило, три дня и производится по следующей схеме:
1-й день — микроскопия мазка из исследуемого материала, окрашенного (обычно по Граму) — для предварительного ознакомления с микрофлорой, что может быть полезным в выборе питательной среды для посева. Затем посев материала на поверхность застывшего питательного агара для получения изолированных колоний. Рассев можно произвести по методу Дригальского на три чашки Петри с питательной средой. Каплю материала наносят на первую чашку и распределяют шпателем по всей чашке. Затем этим же шпателем распределяют оставшуюся на нем культуру на второй чашке и таким же образом — на третьей. Наибольшее количество колоний вырастет на первой чашке, наименьшее — на третьей. В зависимости от того, сколько было микробных клеток в исследуемом материале, на одной из чашек вырастут изолированные колонии.
Такого же результата можно достигнуть, произведя рассев на одной чашке. Для этого делят чашку на четыре сектора. Исследуемый материал засевают бактериологической петлей штрихами на первом секторе, затем, прокалив и остудив петлю, распределяют посев из первого сектора во второй и таким же образом последовательно в третий и четвертый сектор. Из отдельных микробных клеток после суточного инкубирования в термостате образуются изолированные колонии.
2-й день — изучение колоний, выросших на чашках, описание их. Колонии могут быть прозрачными, полупрозрачными или непрозрачными, они имеют различные размеры, округлые правильные или неправильные очертания, выпуклую или плоскую форму, гладкую или шероховатую поверхность, ровные или волнистые, изрезанные края. Они могут быть бесцветными или иметь белый, золотистый, красный, желтый цвет. На основании изучения этих характеристик выросшие колонии разделяются на группы. Затем из исследуемой группы отбирают изолированную колонию, готовят мазок для микроскопического исследования с целью проверки однородности микробов в колонии. Из этой же колонии производят посев в пробирку со скошенным питательным агаром.
3-й день — проверка чистоты культуры, выросшей на скошенном агаре путем микроскопии мазка. При однородности исследуемых бактерий выделение чистой культуры можно считать законченным.
Для идентификации выделенных бактерий изучаются культуральные признаки, то есть характер роста на жидких и плотных питательных средах. Например, стрептококки на сахарном бульоне образуют придонный и пристеночный осадок, на кровяном агаре — мелкие, точечные колонии; холерный вибрион образует пленку на поверхности щелочной пептонной воды, а на щелочном агаре — прозрачные колонии; палочка чумы на питательном агаре образует колонии в виде «кружевных платочков» с плотным центром и тонкими волнистыми краями, а в жидкой питательной среде — пленку на поверхности, а затем -нити, отходящие от нее в виде «сталактитов».
Выделение чистых культур анаэробных бактерий:
Химические методы заключаются в том, что чашки с посевами анаэробов ставят в герметически закрытый эксикатор, куда помещают химические вещества, например, пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.
Биологический метод основан на одновременном выращивании анаэробов и аэробов на плотных питательных средах в чашках Петри, герметически закрытых после посева. Вначале кислород поглощается растущими аэробами, а затем начинается рост анаэробов.
Выделение чистой культуры анаэробов начинают с накопления анаэробных бактерий путем посева на среду Китта-Тароцци. В дальнейшем получают изолированные колонии одним из двух способов:
1) посев материала производят путем смешивания с расплавленным теплым сахарным агаром в стеклянных трубках. После застывания агара в глубине его вырастают изолированные колонии, которые извлекают путем распила трубки и пересевают на среду Китта-Тароцци (способ Вейнберга);
2) посев материала производят на чашки с питательной средой и инкубируют в анаэростате. Выросшие на чашке изолированные колонии пересевают на среду Китта-Тароцци.
21) Вирусы (история открытия, характеристика).
Первооткрывателем вирусов, основоположником вирусологии является русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ)
Вирусы настолько отличаются от микроорганизмов, что выделены в особое царство — царство Vira
Особенности вирусов, отличающие их от всех других живых существ:
1) наличие только одного типа нуклеиновой кислоты — ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза белков,
2) отсутствие собственных белоксинтезирующих систем и клеточного строения;
3) внутриклеточный паразитизм на молекулярном (генетическом) уровне.
Внеклеточная форма вируса — вирион и вирус, находящийся внутри клетки хозяина — это две разные формы вируса.
Вирионы разных вирусов имеют размеры от 15 до 400 нанометров. Нанометр — это 10 -9 метра. Наиболее мелкие вирусы — вирусы полиомиелита — имеют вирион размером 17-25 им, средние — вирус гриппа — 80-120 нм, крупные — вирус оспы — 300-400 им.
В центре вириона располагается его геном. Это нуклеиновая кислота — ДНК или РНК (однонитевая или двунитевая). Плюс-однонитевая РНК несет две функции: наследственную и информационную, например у вируса полиомиелита. Минус-однонитевая РНК, как, например, у вируса гриппа, несет только наследственную функцию, и только в процессе репродукции вируса к ней достраивается плюс-нить иРНК.
Вокруг нуклеиновой кислоты симметрично располагаются белковые молекулы — капсомеры, составляющие капсид (лат. capsa — коробка). Различают спиральный тип симметрии, когда капсомеры уложены по всей длине молекулы нуклеиновой кислоты, и кубический, когда капсомеры располагаются в виде двадцатигранника (икосаэдра).
Вирионы, содержащие только нуклеиновую кислоту и белок, составляют нуклеокапсид. Это простые вирусы, например, ВТМ, вирус полиомиелита.
У вирионов сложноорга-низованных вирусов имеется еще поверхностная оболочка — суперкапсид, содержащий, кроме белков, также углеводы, липиды, компоненты клетки хозяина. Строение вириона лежит в основе классификации вирусов. По типу нуклеиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структуре вирионов, по месту размножения и по другим признакам проводится деление на семейства и роды.
Вследствие малых размеров вирусы не видны в световом микроскопе. Только наиболее крупный из них — вирус оспы — можно наблюдать в виде мелких точечных образований — элементарных телец Пашена.
Размножаясь в чувствительных клетках организма, вирусы оспы, бешенства, гриппа образуют в них внутриклеточные включения. Их можно обнаружить в световом или в люминесцентном микроскопе. Обнаружение внутриклеточных включений используется для диагностики. Например, включения Бабеша-Негри в нервных клетках обнаруживаются при бешенстве.
Морфологию вирионов изучают в электронном микроскопе. Вирусы имеют разные формы: сферическую, нитевидную, палочковидную.
Репродукция вирусов
Вирусы не способны размножаться на питательных средах — это строгие внутриклеточные паразиты. Более того, в отличие от риккетсий и хламидий, вирусы в клетке хозяина не растут и не размножаются путем деления. Составные части вируса — нуклеиновые кислоты и белковые молекулы синтезируются в клетке хозяина раздельно, в разных частях клетки — в ядре и в цитоплазме. При этом клеточные белоксинтезирующие системы подчиняются вирусному геному, его НК.
Репродукция вируса в клетке происходит в несколько фаз:
— Первая фаза — адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.
— Вторая фаза — проникновение вируса в клетку хозяина путем виропексиса.
— Третья фаза — «раздевание» вирионов, освобождение нуклеиновой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем слияния оболочки вириона и клетки-хозяина. В этом случае вторая и третья фазы объединяются в одну.
В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.
ДНК-содержащие (ДНК —> иРНК —>белок)
1. Репродукция происходит в ядрх: аденовирусы, герпес,папо-вавирусы. Используют ДНК-зависимую РНК — полимеразу клетки.
2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу. РНК-содержащие.
1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет. РНК —>белок
2. Рибовирусы с негативным геномом (минус- нитиевые): грипп,корь, паротит, орто-, парамиксовирусы.
(-)РНК —> иРНК —> белок (иРНК комплементарная (-)РНК) Этот процесс идет при участии специального вирусного фермента — вирионная РНК-зависимая PHK-полимераза ( в клетке такого фермента быть не может).
(-)РНК -> ДНК —> иРНК —>белок (и РНК гомологична РНК) В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента — РНК-зависимой ДНК-полимеразы (обратной транскриптазы или ревертазы)
— Четвертая фаза — синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.
— Пятая фаза — сборка вириона. Путем самосборки образуются нуклеокапсиды.
— Шестая фаза — выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.
Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.
Иной путь — интегративный — заключается в том, что после проникновения вируса в клетку и «раздевания» вирусная нуклеиновая кислота интегрирует в клеточный геном, то есть встраивается в определенном месте в хромосому клетки и затем в виде так называемого прови-руса реплицируется вместе с ней. Для ДНК- и РНК-содержащих вирусов этот процесс совершается по-разному. В первом случае вирусная ДНК интегрирует в клеточный геном. В случае РНК-содержащих вирусов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента «обратной транскриптазы» образуется ДНК, которая встраивается в клеточный геном. Провирус несет дополнительную генетическую информацию, поэтому клетка приобретает новые свойства. Вирусы, способные осуществить такой тип взаимодействия с клеткой, называются интегративными. К интегративным вирусам относятся некоторые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус иммунодефицита человека, умеренные бактериофаги.
Кроме обычных вирусов, существуют прионы — белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.
Источник
8. Методы выделения чистых культур микроорганизмов
Культивирование микроорганизмов, помимо состава питательной среды, сильно зависит от физических и химических факторов (температура, кислотность, аэрация, свет и т. д.). При этом количественные показатели каждого из них неодинаковы и определяются особенностями метаболизма каждой группы бактерий. Существуют методы культивирования микроорганизмов на твердых и в жидких питательных средах в аэробных, анаэробных и других условиях.
Методы выделения чистых культур аэробных микроорганизмов. Для того, чтобы получить изолированные колонии, при нанесении материал распределяют так, чтобы клетки бактерий были удалены друг от друга. Для получения чистой культуры используют две основные группы методов:
а) методы, основанные на принципе механического разделения микроорганизмов;
б) методы, основанные на биологических свойствах микроорганизмов.
Методы, основанные на принципе механического разделения микроорганизмов
Рассев шпателем по Дригальскому. Берут 3 чашки Петри с питательной средой. На 1-ю чашку петлей или пипеткой наносят каплю исследуемого материала и растирают шпателем по всей поверхности питательного агара. Затем шпатель переносят во 2-ю чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды. Далее шпатель переносят в 3-ю чашку и аналогичным образом производят посев. На 1-й чашке вырастает максимальное количество колоний, на 3-й — минимальное. В зависимости от содержания микробных клеток в исследуемом материале на одной из чашек вырастают отдельные колонии, пригодные для выделения чистой культуры микроорганизма.
Метод Пастера (метод разведений).Из исследуемого материала готовят ряд последовательных, чаще десятикратных серийных разведений в жидкой стерильной среде или физиологическом растворе в пробирках. Далее высевают материал газоном по 1 мл из каждой пробирки. Предполагают, что в какой-то из пробирок останется количество микроорганизмов, поддающихся подсчету при высеве на пластинчатые среды. Этот метод дает возможность подсчитать микробное число в исследуемом материале. (Микробное число — количество колоний на последней чашке с ростом микроорганизмов, умноженное на степень разведения материала).
Получение чистой культуры методом рассева в глубине среды Метод Коха (метод заливок).Исследуемый материал в небольшом количестве вносят в пробирку с расплавленным и охлажденным до 45-50°С МПА, перемешивают, затем каплю питательной среды с разведенным материалом переносят во вторую пробирку с расплавленным МПА и т.д. Количество разведений зависит от предполагаемой численности микроорганизмов в исследуемом материале. Приготовленные разведения микробов выливают из пробирок в стерильные чашки Петри, обозначенные номерами, соответствующими номерам пробирок. После застудневания среды с исследуемым материалом чашки помещают в термостат. Количество колоний в чашках с питательной средой уменьшается по мере разведения материала.
Рассев петлей (посев штрихами).Берут одну чашку Петри с питательным агаром и делят ее на 4 сектора, проводя разграничительные линии на внешней стороне дна чашки. Исследуемый материал петлей вносят в первый сектор и проводят ею параллельные линии по всему сектору на расстоянии одна от другой около 5 мм. Этой же петлей, не изменяя ее положения по отношению к агару, проводят такие же линии на других секторах чашки. В том месте, где на агар попало большое количество микробных клеток, рост микроорганизмов будет в виде сплошного штриха. На секторах с небольшим количеством клеток вырастают отдельные колонии. Кроме того, можно наливать разведенные растворы смешанной культуры на поверхность твердых сред в чашках.
Метод фильтрации.Основан на пропускании исследуемого материала через специальные фильтры с определенным диаметром пор и разделении содержащихся микроорганизмов по величине. Этот метод применяется главным образом для очистки вирусов от бактерий, а также при получении фагов и токсинов (в фильтрате — чистый фаг, очищенный токсин).
Методы, основанные на биологических свойствах микроорганизмов
Создание оптимальных условий для размножения
Создание оптимального температурного режима для избирательного подавления размножения сопутствующей микрофлоры при низкой температуре и получения культур психрофильных или термофильных бактерий. Большинство микробов неплохо развиваются при 35-37°С, иерсинии хорошо растут при 22°С, лептоспиры культивируют при 30°С. Термофильные бактерии растут при температурах, лежащих за пределами температурных режимов прочих сопутствующих видов бактерий (так, кампилобактер культивируют при 42°С).
Создание условий для аэробиоза или анаэробиоза. Большинство микроорганизмов хорошо растут в присутствии атмосферного кислорода. Облигатные анаэробы растут в условиях, исключающих присутствие атмосферного кислорода (возбудители столбняка, ботулизма, бифидумбактерии, бактероиды и др.). Микроаэрофильные микроорганизмы растут только при низком содержании кислорода и повышенном содержании СО2(кампилобактер, геликобактер).
Метод обогащения. Исследуемый материал засевают на элективные питательные среды, способствующие росту определенного вида микроорганизмов.
Метод Шукевича.Исследуемый материал засевают в конденсационную воду скошенного агара. При размножении подвижные формы микробов из конденсационной воды распространяются по агару, как бы «вползают» на его поверхность. Отсевая верхние края культуры в конденсационную воду свежескошенного агара и повторяя это несколько раз, можно получить чистую культуру. Так, для выделения культуры Proteus vulgaris, Clostridium tetani материал засевают в конденсационную воду на дне пробирки со скошенной плотной средой, не касаясь поверхности среды. Названные микроорганизмы способны давать ползучий рост (роение) на поверхности среды. Сопутствующие микробы растут в нижней части питательной среды, а протей и столбнячный микроб в виде пленки распространяются вверх и занимают всю скошенную часть агара.
Метод прогревания.Позволяет отделить спорообразующие бациллы от неспоровых форм. Прогревают исследуемый материал на водяной бане при 80°С 10—15 мин. При этом погибают вегетативные формы, а споры сохраняются и при посеве на соответствующую питательную среду прорастают.
Бактериостатический метод (метод ингибирования).Основан на различном действии некоторых химических веществ и антибиотиков на микроорганизмы. Определенные вещества угнетают рост одних микроорганизмов и не оказывают влияния на другие. Например, небольшие концентрации пенициллина задерживают рост грамположительных микроорганизмов и не влияют на грамотрицательные. Смесь пенициллина и стрептомицина позволяет освободить нитчатые грибы и дрожжи от бактериальной флоры. Серная кислота (5% раствор) быстро убивает большинство микроорганизмов, а туберкулезная палочка выживает в этих условиях. Необходимо учитывать, что селективные факторы часто включены в состав среды в бактериостатических концентрациях, поэтому сопутствующие микрооорганизмы остаются жизнеспособными и при переносе колоний исследуемой культуры на обычные среды могут быть причиной получения смешанной культуры.
Метод заражения лабораторных животных. Применяют в целях выделения и идентификации патогенных микроорганизмов и отделения их от сапрофитной флоры. Для заражения подбирают наиболее восприимчивые к предполагаемому возбудителю инфекции виды животных. После появления у зараженных организмов признаков болезни их убивают и производят посев органов и тканей на питательные среды. При выделении и изучении облигатных паразитов этот метод является основным и единственным. Биопроба – метод, который позволяет не только выделить возбудитель из патологического материала, но также изучить вирулентность чистой культуры. Организм животного представляет собой биологический «фильтр», который в силу выраженности своих защитных свойств уничтожает сопутствующую непатогенную микрофлору, но не способен подавить размножение вирулентных бактерий. Биопроба проводится при выделении чистой культуры пневмококка, микобактерий туберкулеза, франциселл и т.п.
Источник