Способы выделение чистых культур аэробных микроорганизмов

22. Методы выделения чистых культур аэробов.

Процесс выделения чистой культуры можно разделить на несколько этапов.

Первый этап. Из исследуемого материала готовят мазок, окрашивают его по Граму или другим методом и микрсгскопиру-ют. Для посева исследуемый материал в случае необходимости разводят в пробирке со стерильным изотоническим раствором хлорида натрия. Одну каплю приготовленного разведения нано­сят петлей на поверхность питательного агара в чашку Петри и тщательно втирают шпателем в среду, равномерно распределяя материал по всей ее поверхности. После посева чашку перевора­чивают дном кверху, подписывают и помещают в термостат при температуре 37 °С на 18—24 ч.

Второй этап. Просматривают чашки и изучают изолиро­ванные колонии, обращая внимание на их форму, величину, кон­систенцию и другие признаки. Для определения морфологии кле­ток и их тинкториальных свойств из части исследуемой колонии готовят мазок, окрашивают по Граму и микроскопируют. Для выделения и накопления чистой культуры одну изолированную колонию или несколько различных изолированных колоний пе­ресевают в отдельные пробирки со скошенным агаром или какой-либо другой питательной средой. Для этого часть колонии сни­мают петлей, не задевая соседние колонии.

Третий этап: Отмечают характер роста выделенной чис­той культуры. Визуально чистая культура характеризуется однородным ростом. При микроскопическом исследовании окрашен­ного мазка, приготовленного из такой культуры, в нем обнару­живаются морфологически и тинкториально однородные клетки. Очнако в случае выраженного полиморфизма, присущего неко­торым видам бактерий, в мазках из чистой культуры наряду с типичными встречаются и другие формы клеток.

23. Методы выделения чистых культур анаэробов.

Питательные среды для анаэробов должны отвечать следующим основным требованиям: 1) удовлетворять питательным потребно­стям; 2) обеспечивать быстрый рост микроорганизмов; 3) быть адек­ватно редуцированными

Посевы с целью выделения анаэробной микрофлоры, как спо-рообразующей (клостридии), так и неспорообразующей (вейлонеллы, бактероиды, пептококки), производят в строго анаэроб­ных условиях. Первичные посевы делают на обогатительные сре­ды (тиогликолевую, Китта — Тароцци), затем пересевают на плотные среды: сахарный кровяной агар в чашки Петри, в высо­кий столбик сахарного питательного агара или другие среды для получения изолированных колоний. После инкубации посевов в анаэробных условиях из образовавшихся колоний бактерий го­товят мазки, окрашивают, микроскопируют, а затем пересевают на среду Китта — Тароцци и агаровые среды для выделения чистой культуры.

При выделении спорообразующих анаэробных бактерий (кло­стридии) первоначальные посевы прогревают на водяной бане при температуре 80 °С в течение 20 мин для уничтожения веге­тативных клеток посторонней микрофлоры, которая может при­сутствовать в исследуемом материале

24. Идентификация микроорганизмов морфологическая, культуральная серологическая, биологиче­ская, генетическая.

Идентификация – это определение систематического положения, выделение из какого-либо источника до уровня вида или варианта.

25. Биохимический метод идентификации: определение протеолитических. сахаролитических, липолитических свойств, выявление гемолизинов и оксидоредуктаз. Использование автоматических микробиологических анализаторов.

Этот метод предусматривает изучение ферментативной деградации различных субстратов (углеводов, аминокислот и белков, мочевины, перекиси водорода и др.) с образованием промежуточных и конечных

Карбогидразы— ферменты, разлагающие углеводы. Определяя карбогидразы, выявляют т.н. сахаролитические свойства микробов. С этой целью используют следующие среды:

а) среды Гисса (жидкие и полужидкие с индикаторами). В качестве последних используют реактив Андреде, бромтимоловый синий или ВР О ферментативной активности бактерий судят по изменению цвета среды и образованию газа;

б) дифференциально-диагностические среды с лактозой (Эндо, Левина. Плоскирева и др.);

в) полиуглеводные среды (типа Олькеницкого, Клиглера и др.).

Протеазы-ферменты, разлагающие белки:

а) исследуемая культура может расщеплять белки субстрата с образованием пептона, альбумоз, аминокислот. Этот процесс идет за счет ферментов-протеиназ и пептидаз. Для выявления указанных ферментов исследуемую культуру засевают на ряд сред: свернутая сыворотка, столбик желатина (разжижение в положительных случаях), молочный агар в чашке Петри (в положительных случаях вокруг колоний появляются зоны помутнения);

б)расщепление аминокислот микробами может идти путем декарбоксилирования, либо путем дезаминирования. В первом случае из той или иной аминокислоты образуются амины, которые выявляются либо методом элекрофореза. либо по подщелачиванию среды. О наличии дезаминаз у микроба судят по образованию аммиака в среде как результат процесса дезаминирования аминокислоты;

в) расщепление аминокислоты триптафана за счет действия фермента триптафаназы сопровождается образованием индола. Последний выявляется с помощью бумажки, смоченной щавелевой кислотой и укрепленной под пробкой над питательной средой. В положительныхслучаях бумажка краснеет;

г) для выявления ферментов расщепления серосодержащих аминокислот (цистин, цистеин) ставят пробы на H2S, как Продукт расщепления этих аминокислот десульфуразами. Наличие H2S выявляется и в среде Олькеницкого;

д) для выявления уреазы — фермента, расщепляющего мочевину, в питательную среду нейтральной рН добавляют мочевину и индикатор. В положительных случаях среда изменяет цвет за счет сдвига рН в щелочную сторону в связи с образованием аммиака. Липазы — ферменты разложения липидов и липоидов. Чаще всего определяют лецитиназу посевом на желточный агар. Лецитиназа расщепляет лецитин на фосфохолин и диглицерид. В этих случаях при росте колоний вокруг них появляются опалесцирующие зоны, отражающие лецитиназную активность.

Ферменты-токсины: Гемолизины — ферменты расщепления фосфолипидной мембраны эритроцитов. Они выявляются посевом культуры на кровяной агар (5-10%). Различают b-гемолиз или полный гемолиз, когда образуются зоны просветления вокруг колоний, а-гемолиз, неполный гемолиз, при наличии зон зеленого цвета вокруг колоний. Отсутствие гемолиза обозначается как д-гемолиз.

Читайте также:  Тема способы наглядного представления статистических данных

Цитотоксины— ферменты, оказывающие токсический эффект на клетки мишени. Например, цитотоксичность токсина анаэробных микрорганизмов определяют на культуре клеток. С этой целью 1 г материала (испражнения или др.) разводят в фосфатном буфере 1:10 масса/объем, центрифугируют ЗО мин при 4ООО об/мин. Супернатант фильтруют на фильтре 2О нм, вносят в монослой культуры клеток МакКоя и инкубируют при 37°С 24-48 часов до достижения токсического эффекта.

Иммунохимическое определение продукции токсинов: используется, как правило, иммуноферментный метод определения многих экзотоксинов -дифтерийного, холерного, стафилококкового и др. Для этого применяются тест-системы на основе моноклональных антител к определенному экзотоксину.

Ппазмокоагулаза— фермент, свертывающий плазму крови животных. Определяют в пробирочной реакции. В1 мл цитратной плазмы кролика или человека (цельной или разведенной в 2 и 4 раза физраствором) размешивают петлю суточной агаровой культуры микроба. Смесь инкубируют в термостате при 37°С. В положительных случаях через 2-4 часа плазма свертывается (появляется сгусток). Лецитиназа — см. выше.

1. Определение оксидаз. На фильтровальную бумагу, смоченную 1% раствором тетраметилпарафенилендиамина, петлей наносят полосы испытуемой культуры. В положительном случае появляется фиолетовое окрашивание полос (в течение 1 мин).

2. Определение каталазы. Каплю 3% раствора перекиси водорода наносят на предметное стекло и туда вносят петлю испытуемой культуры. В присутствии каталазы образуются пузырьки кислорода.

3. Определение дегидраз. О наличии дегидраз судят по редуцирующей способности микроба, т.е. способности восстанавливать некоторые органические красители (например, 1% водный раствор метиленовой синьки). К столбику сахарного агара (донатор водорода) добавляют краситель (акцептор водорода) и засевают микробную культуру уколом. В положительных случаях растущий на такой среде микроб ее обесцвечивает.

4. Определение спектра короткоцепочечных жирных кислот (КЦЖК),Анаэробные микроорганизмы продуцируют промежуточные продукты, включающие короткоцепочечные жирные кислоты и спирты, спектр (профиль) которых различен у разных видов микроорганизмов и позволяет проводить идентификацию микроорганизмов до уровня рода. Наиболее часто исследуют уксусную, пропионовую, бутиловую, изобутиловую, валериановую, изовалериановую, капроновую и изокапроновую кислоты. Для определения КЦЖК используют метод газожидкостной хроматографии. Идентифицируют такие микроорганизмы как актиномицеты, пролионибактерии, эубактерии, бифидобактерии, клостридии.

В последние годы а бактериологических лабораториях применяются коммерческие тест-системы для быстрой биохимической идентификации (определение биохимической активности разных групп микроорганизмов): например, 2О тестов для энтеробактэрий и ЗО тестов для анаэробов. Схема идентификации включает следующие этапы:

Колонии —- Приготовление —- Внесение —— Инкубация —- Учет(+ -) —- Интер-

суспензии суспензии 4 часа 37°С претация в среду

В качестве материала для идентификации используют хорошо изолированную колонию на чашке или чистую культуру в пробирке, из которой готовят суспензию в концентрации стандарта оптической плотности N4, затем по 55 мкл суспензии вносят в лунки со средами данной тест-системы. Планшета со стрипами инкубируется при 37°С 4 часа. Учет может осуществляться автоматически (используя прибор «АТВ») или визуально Результат биохимической реакции оценивают в виде «+» или «-» и вносят о референс-таблицу, в которой положительному результату соответствует численное выражение, в результате чего получается определенный числовой профиль, соответствующий специапьно разработанному индексу аналитического профиля, позволяющему быстро идентифицировать тот ипи иной

Источник

Методы выделения чистых культур аэробных и факультативно-анаэробных микроорганизмов

I. Методы механического разобщения бактерий.

1. Посев материала на чашки Петри бактериальной петлёй, шпателем, пипеткой, последовательно на несколько сред, не прокаливая инструмент (по Дригальскому). При таком посеве материал, находящийся на петле, расходуется постепенно, и по линиям сетки, нанесённым в конце посева, вырастают изолированные колонии бактерий.

2. Посев пластинчатыми разводками (метод рассева в глубине среды по Коху) применяют, если в исследуемом материале содержится много бактерий. Готовят десятикратные разведения материала в пробирках, затем выливают содержимое пробирок в стерильные чашки Петри, заливают 20 мл расплавленного и остуженного до 45 0 С МПА, перемешивают, дают агару застыть и инкубируют чашки в термостате.

3. Разобщение на основе подвижности бактерий. Материал засевают в каплю конденсационной жидкости скошенного МПА. При этом подвижные бактрии как бы «мигрируют» вверх по агаровому скосу и вырастают в виде колоний, расположенных в верхней части скошенного агара. При 2–3-кратном пассировании этих колоний в конденсационную жидкость скошенного агара удается получить чистую культуру подвижной бактерии (например, протея).

4. Разобщение на основе размеров микроорганизмов используют для получения чистых культур вирусов и микоплазм. Для этого смесь микроорганизмов фильтруют через микро- и миллипористые фильтры. Чистые культуры микроорганизмов получают в фильтрах.

II. Метод заражения чувствительных лабораторных животных (биологический) основан на избирательной чувствительности животных к микроорганизмам различных видов. Это выражается в быстрой скорости размножения определенного вида микроорганизмов при попадании в кровь и внутренние органы животного, откуда их затем выделяют. При этом другие виды микробов погибают под действием защитных факторов организма животного. Так выделяют, например, чистую культуру пневмококков из организма белой мыши, чистую культуру палочки туляремии из организма морской свинки.

III. Методы, основанные на избирательной чувствительности микроорганизмов к воздействию внешних факторов (предварительно или во время культивирования):

а) физических факторов:

— высокой температуры: спорообразующие бактерии родов Clostridium и Bacillus выживают при нагревании смеси микробов, а неспорообразующие — гибнут;

— низкой температуры: при пониженных температурах культивируют Y. enterocolitica, Y. pestis, L. monocytogenes;

б) химических факторов:

— кислот: при обработке кислотой смесей кислотоустойчивых и некислотоустойчивых бактерий, последние гибнут, а кислотоустойчивые (возбудители туберкулёза) остаются в чистой культуре; использование среды Сабуро (рН 5-6) для выделения грибов;

— щелочей: использование щелочной пептонной воды для выделения V. cholerae; использование метода гомогенизации мокроты с 10% NaOH при выделении M. tuberculosis;

Читайте также:  Способы разблокировки аккаунта google

— солей: на элективных средах растут определённые виды бактерий (например, стафилококк растёт на ЖСА, содержащем 10–15% NaCl);

— антибиотиков: основан на избирательной чувствительности определённых видов бактерий к отдельным антибиотикам. При посеве смеси бактерий на среду с добавлением антибиотика, вырастают нечувствительные к нему бактерии: выделение микоплазм на средах с пенициллином, выделение анаэробов на средах с аминогликозидами.

— красителей: красители добавляют к питательным средам для подавления роста сопутствующей флоры: при выделении энтеробактерий в среду Левина добавляют метиленовый синий и эозин для подавления грамположительных бактерий, при выделении микобактерий в среду Левенштейна-Йенсена добавляют малахитовый зелёный.

— специфических ингибиторов: среда с теллуритом калия используется для выделения C. diphtheriae, среда с селенитом натрия используется для выделения Salmonella, среды с желчью используются для выделения энтеробактерий и бактероидов.

Источник

Методы выделения чистых культур аэробных и анаэробных бактерий.

Выделение чистых культур аэробов занимает, как правило, три дня и производится по следующей схеме:

1-й день — микроскопия мазка из исследуемого материала, ок­рашенного (обычно по Граму) — для предварительного ознакомления с микрофлорой, что может быть полезным в выборе питательной среды для посева. Затем посев материала на поверхность застывшего пита­тельного агара для получения изолированных колоний. Рассев можно произвести по методу Дригальского на три чашки Петри с питательной средой. Каплю материала наносят на первую чашку и распределяют шпателем по всей чашке. Затем этим же шпателем распределяют остав­шуюся на нем культуру на второй чашке и таким же образом — на тре­тьей. Наибольшее количество колоний вырастет на первой чашке, наи­меньшее — на третьей. В зависимости от того, сколько было микробных клеток в исследуемом материале, на одной из чашек вырастут изоли­рованные колонии.

Такого же результата можно достигнуть, произведя рассев на од­ной чашке. Для этого делят чашку на четыре сектора. Исследуемый материал засевают бактериологической петлей штрихами на первом секторе, затем, прокалив и остудив петлю, распределяют посев из пер­вого сектора во второй и таким же образом последовательно в тре­тий и четвертый сектор. Из отдельных микробных клеток после су­точного инкубирования в термостате образуются изолированные колонии.

2-й день — изучение колоний, выросших на чашках, описание их. Колонии могут быть прозрачными, полупрозрачными или непроз­рачными, они имеют различные размеры, округлые правильные или неправильные очертания, выпуклую или плоскую форму, гладкую или шероховатую поверхность, ровные или волнистые, изрезанные края. Они могут быть бесцветными или иметь белый, золотистый, красный, желтый цвет. На основании изучения этих характеристик выросшие колонии разделяются на группы. Затем из исследуемой группы отби­рают изолированную колонию, готовят мазок для микроскопического исследования с целью проверки однородности микробов в колонии. Из этой же колонии производят посев в пробирку со скошенным пита­тельным агаром.

3-й день — проверка чистоты культуры, выросшей на скошенном агаре путем микроскопии мазка. При однородности исследуемых бак­терий выделение чистой культуры можно считать законченным.

Для идентификации выделенных бактерий изучаются культуральные признаки, то есть характер роста на жидких и плотных пита­тельных средах. Например, стрептококки на сахарном бульоне образуют придонный и пристеночный осадок, на кровяном агаре — мелкие, точечные колонии; холерный вибрион образует пленку на поверхности щелочной пептонной воды, а на щелочном агаре — прозрачные коло­нии; палочка чумы на питательном агаре образует колонии в виде «кру­жевных платочков» с плотным центром и тонкими волнистыми края­ми, а в жидкой питательной среде — пленку на поверхности, а затем -нити, отходящие от нее в виде «сталактитов».

Выделение чистых культур анаэробных бактерий:

Химические методы заключаются в том, что чашки с посевами ана­эробов ставят в герметически закрытый эксикатор, куда помещают хи­мические вещества, например, пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном выращивании анаэробов и аэробов на плотных питательных средах в чашках Пет­ри, герметически закрытых после посева. Вначале кислород погло­щается растущими аэробами, а затем начинается рост анаэробов.

Выделение чистой культуры анаэробов начинают с накопления анаэробных бактерий путем посева на среду Китта-Тароцци. В даль­нейшем получают изолированные колонии одним из двух способов:

1) посев материала производят путем смешивания с расплавленным теплым сахарным агаром в стеклянных трубках. После застывания ага­ра в глубине его вырастают изолированные колонии, которые извле­кают путем распила трубки и пересевают на среду Китта-Тароцци (спо­соб Вейнберга);

2) посев материала производят на чашки с питательной средой и инкубируют в анаэростате. Выросшие на чашке изолированные ко­лонии пересевают на среду Китта-Тароцци.

21) Вирусы (история открытия, характеристика).

Первооткрывателем вирусов, основоположником вирусологии яв­ляется русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ)

Вирусы настолько отличаются от микроорганизмов, что выделе­ны в особое царство — царство Vira

Особенности вирусов, отличающие их от всех других живых су­ществ:

1) наличие только одного типа нуклеиновой кислоты — ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза бел­ков,

2) отсутствие собственных белоксинтезирующих систем и клеточ­ного строения;

3) внутриклеточный паразитизм на молекулярном (генетическом) уровне.

Внеклеточная форма вируса — вирион и вирус, находящийся внут­ри клетки хозяина — это две разные формы вируса.

Вирионы разных вирусов имеют размеры от 15 до 400 наномет­ров. Нанометр — это 10 -9 метра. Наиболее мелкие вирусы — виру­сы полиомиелита — имеют вирион размером 17-25 им, средние — вирус гриппа — 80-120 нм, крупные — вирус оспы — 300-400 им.

Читайте также:  Способ передачи сигналов управления

В центре вириона располагается его геном. Это нуклеиновая кис­лота — ДНК или РНК (однонитевая или двунитевая). Плюс-однонитевая РНК несет две функции: наследственную и информационную, напри­мер у вируса полиомиелита. Минус-однонитевая РНК, как, например, у вируса гриппа, несет только наследственную функцию, и только в процессе репродукции вируса к ней достраивается плюс-нить иРНК.

Вокруг нуклеиновой кислоты симметрично располагаются белко­вые молекулы — капсомеры, составляющие капсид (лат. capsa — коробка). Различают спиральный тип симметрии, когда капсомеры уложены по всей длине молекулы нуклеиновой кислоты, и кубический, когда кап­сомеры располагаются в виде двадцатигранника (икосаэдра).

Вирионы, содержащие только нуклеиновую кислоту и белок, сос­тавляют нуклеокапсид. Это простые вирусы, например, ВТМ, вирус полиомиелита.

У вирионов сложноорга-низованных вирусов имеется еще поверхностная оболочка — суперкапсид, содержащий, кроме белков, также углево­ды, липиды, компоненты клет­ки хозяина. Строение вирио­на лежит в основе классифи­кации вирусов. По типу нук­леиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структу­ре вирионов, по месту размно­жения и по другим признакам проводится деление на семей­ства и роды.

Вследствие малых разме­ров вирусы не видны в свето­вом микроскопе. Только наи­более крупный из них — вирус оспы — можно наблюдать в виде мелких точечных образо­ваний — элементарных телец Пашена.

Размножаясь в чувствительных клетках организма, вирусы оспы, бе­шенства, гриппа образуют в них внутриклеточные включения. Их мож­но обнаружить в световом или в люминесцентном микроскопе. Обна­ружение внутриклеточных включений используется для диагностики. Например, включения Бабеша-Негри в нервных клетках об­наруживаются при бешенстве.

Морфологию вирионов изучают в электронном микроскопе. Ви­русы имеют разные формы: сферическую, нитевидную, палочковидную.

Репродукция вирусов

Вирусы не способны размножаться на питательных средах — это строгие внутриклеточные паразиты. Более того, в отличие от риккетсий и хламидий, вирусы в клетке хозяина не растут и не размножаются путем деления. Составные части вируса — нуклеиновые кислоты и бел­ковые молекулы синтезируются в клетке хозяина раздельно, в разных частях клетки — в ядре и в цитоплазме. При этом клеточные белоксинтезирующие системы подчиняются вирусному геному, его НК.

Репродукция вируса в клетке происходит в несколько фаз:

— Первая фаза — адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

— Вторая фаза — проникновение вируса в клетку хозяина путем виропексиса.

— Третья фаза — «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совер­шается следующим образом.

ДНК-содержащие (ДНК —> иРНК —>белок)

1. Репродукция происходит в ядрх: аденовирусы, герпес,папо-вавирусы. Используют ДНК-зависимую РНК — полимеразу клетки.

2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу. РНК-содержащие.

1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет. РНК —>белок

2. Рибовирусы с негативным геномом (минус- нитиевые): грипп,корь, паротит, орто-, парамиксовирусы.

(-)РНК —> иРНК —> белок (иРНК комплементарная (-)РНК) Этот процесс идет при участии специального вирусного фермен­та — вирионная РНК-зависимая PHK-полимераза ( в клетке такого фермента быть не может).

(-)РНК -> ДНК —> иРНК —>белок (и РНК гомологична РНК) В этом случае процесс образования ДНК на базе (-)РНК возмо­жен при участии фермента — РНК-зависимой ДНК-полимеразы (об­ратной транскриптазы или ревертазы)

— Четвертая фаза — синтез компонентов вириона. Нуклеиновая кис­лота вируса образуется путем репликации. На рибосомы клетки транс­лируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

— Пятая фаза — сборка вириона. Путем самосборки образуются нуклеокапсиды.

— Шестая фаза — выход вирионов из клетки. Простые вирусы, на­пример, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь — интегративный — заключается в том, что после проник­новения вируса в клетку и «раздевания» вирус­ная нуклеиновая кисло­та интегрирует в клеточ­ный геном, то есть встраивается в опреде­ленном месте в хромосо­му клетки и затем в виде так называемого прови-руса реплицируется вме­сте с ней. Для ДНК- и РНК-содержащих виру­сов этот процесс совер­шается по-разному. В первом случае вирусная ДНК интегрирует в кле­точный геном. В случае РНК-содержащих виру­сов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента «обратной транскриптазы» образуется ДНК, которая встраи­вается в клеточный геном. Провирус несет дополнительную генетичес­кую информацию, поэтому клетка приобретает новые свойства. Виру­сы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся неко­торые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус им­мунодефицита человека, умеренные бактериофаги.

Кроме обычных вирусов, существуют прионы — белковые инфек­ционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

Источник

Оцените статью
Разные способы