Способы вычитания векторов правило параллелограмма

Операции с векторами

Как сложить и перемножить векторы (и зачем).

Мы постепенно показываем вам математику за пределами школьной программы. Начинали со знакомства с векторами, теперь сделаем следующий шаг.

Напомним основные мысли:

  • Вектор — это абстрактное понятие, которое представляет собой организованную последовательность каких-то чисел.
  • В виде вектора можно представить координаты предмета в каком-то пространстве; площадь квартиры и её стоимость; цифровые данные анкеты какого-то человека и динамику цен на нефть.
  • Если по-простому, то векторы нужны, чтобы обрабатывать большое количество организованных чисел. Представьте, что вектор — это коробка с конфетами, только вместо конфет — числа. Каждое число стоит в своей ячейке.
  • Машинное обучение основано на перемножении матриц, которые, в свою очередь, можно представить как наборы векторов. Так что векторы лежат в глубине всех модных и молодёжных технологий ИИ.

С векторами можно совершать некоторые математические операции. Вот о них и поговорим.

Правильно — векторы

Математики часто говорят во множественном числе «вектора», но по словарю правильно «векторы». Это такой профессиональный жаргон, как «договора», «бухгалтера» и «сервера». Мы будем использовать «векторы», но если вы окажетесь в постковидном математическом баре, лучше говорите «вектора».

Сложение

Представим четыре вектора, которые лежат в двухмерном пространстве и пока что не связаны между собой. Нарисуем эти векторы и обозначим их буквами X, Y, Z, K.

Поскольку векторы находятся в одном пространстве, координаты каждого состоят из одинакового количества чисел. У нас пример с двухмерным пространством и два числа. Выглядеть это будет так: X = (6, 4); Y = (3, −2); Z = (−7, −5); K = (−10, 4).

Векторы X, Y, Z, K в двухмерном пространстве

Если у нас несколько векторов с одинаковым количеством чисел, то эти числа можно поэлементно складывать. Для этого мы берём первое число одного вектора, складываем его с первым числом другого вектора и так далее.

Предположим, нам нужно сложить векторы X и Y.

X = (6, 4)
Y = (3, −2)
X + Y = (9, 2)

Вроде просто: складываешь последовательно все координаты, результаты сложения складываешь в исходные коробочки. Так можно делать с любым количеством координат. Помните, что вектор — это необязательно стрелка в двумерном пространстве. Она может быть и в десятимерном пространстве — с точки зрения математики это неважно.

Например, вот сложение векторов с пятью координатами:

X = (6, 4, 11, 14, 99)
Y = (3, -2, 10, -10, 1)
X + Y = (9, 2, 21, 4, 100)

Интуитивное изображение сложения

Для интуитивного восприятия удобно использовать векторы с двумя координатами. Их удобно рисовать на координатной плоскости и таким образом смотреть на геометрию.

Например, можно на плоскости показать, как будет работать сложение двух векторов. Для этого есть два метода: метод треугольника и метод параллелограмма.

Метод треугольника: ставим векторы Х и Y в очередь друг за другом. Для этого берём вектор Х, ставим за ним вектор Y и получаем новый вектор. Новый вектор начинается в хвосте вектора Х и заканчивается на стрелке вектора Y. Этот вектор — результат сложения. Представьте, что это ребёночек двух векторов.

Сложение векторов по методу треугольника: X = (6, 4); Y = (3, −2); Х + Y = (9, 2)

Чтобы воспользоваться методом параллелограмма, нам нужно поставить векторы Х и Y в одну исходную точку. Дальше мы дублируем векторы Х и Y, формируем параллелограмм и получаем новый вектор. В новом векторе соединяем исходную точку с исходной точкой дублирующих векторов — стрелка проходит посередине параллелограмма. Длина нового вектора — это сумма векторов Х и Y.

Сложение по методу параллелограмма и треугольника даёт одинаковый результат. Поэтому выбирайте вариант, который больше подходит под задачу.

Сложение векторов по методу параллелограмма: X = (6, 4); Y = (3, -2); Х + Y = (9, 2)

Вычитание

Вычитание векторов немного сложнее. Чтобы вычесть векторы, нужно «развернуть» вычитаемый вектор и сложить его с исходным. «Развернуть» — то есть направить в обратную сторону, «перевернув» знаки координат. Получится конструкция вроде такой: Х + (−Y)

Дальше используются правила сложения. Пошагово это выглядит так:

  1. У нас есть X = (6, 4) и Y = (3, −2).
  2. Превращаем формулу Х − Y в формулу Х + (−Y).
  3. Разворачиваем вектор Y. Было: Y = (3, −2). Стало: −Y = (−3, 2).
  4. Считаем: X + (−Y) = (3, 6).
Читайте также:  Простой способ простого мыла

Теперь посмотрим, как выглядит вычитание векторов на графике:

Вычитание векторов по методу треугольника: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6) Вычитание векторов по методу параллелограмма: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6)

Длина вектора

Длина вектора — это одно число, которое измеряется расстоянием от кончика до стрелки вектора. Длину вектора нельзя путать с координатами. Координаты — это несколько чисел, которые указывают на расположение стрелки вектора. По координатам можно определить только конечную точку вектора. Например, если X = (6, 2), то стрелка будет находиться в точке 6 по оси Х. Или другой пример: если Y = (6, 5), то стрелка этого вектора будет находиться в точке 5 по оси Y.

Предположим, нам известны начальные точки векторов X и Y. Пусть это будет точка 2 по оси X и точка 2 по оси Y. Так мы можем легко посчитать длину отрезков:

X = 6 − 2 = 4
Y = 5 − 2 = 3

Иногда приходится рассчитывать длину третьего вектора, который привязан к двум другим векторам. Это легко сделать с помощью теоремы Пифагора — это когда квадрат гипотенузы равен сумме квадратов катетов. В нашем случае катетами будут длины векторов X и Y. Вспоминаем школьную формулу и считаем:

|C|2 = 42 + 32 = 25
|C| = √25 = 5 Длина вектора считается по формуле прямоугольного треугольника. Чтобы было проще представить — перенесите векторы на систему координат

Это формула для двумерного пространства. В трёхмерном пространстве формула похожая: нужно сложить квадраты трёх координат и вычислить квадратный корень из суммы.

В пространстве с большим числом измерений формула выглядит сложнее, но по сути то же: складываем все квадраты координат и получаем квадратный корень из этой суммы.

Умножение и деление вектора на число

Умножение и деление позволяют изменить длину и направление вектора. Если мы умножим вектор Х на три, то увеличим его длину в три раза. Если умножим на минус три — увеличим длину и изменим его направление на противоположное.

Умножение вектора на число

Для деления сохраняются аналогичные правила. Делим вектор Х на три и сокращаем длину в три раза. Делим на минус три — сокращаем и разворачиваем.

Деление вектора на число

Да вроде несложно!

Пока ничего сложного. Но если углубляться, вы узнаете, что:

  • векторы можно умножать на векторы тремя способами в зависимости от задачи и от того, что мы понимаем под умножением;
  • если от векторов перейти к матрицам, то перемножение матриц имеет несколько более сложную и довольно неинтуитивную математику;
  • а перемножение матриц — это и есть машинное обучение.

Что дальше

В следующей статье рассмотрим линейную зависимость векторов. Чтобы не скучать — посмотрите интервью с Анастасией Никулиной. Анастасия сеньор-дата-сайентист в Росбанке и по совместительству блогер с интересной историей.

Источник

Сложение векторов

Часть математических и физических задач содержит необходимость математических действий с векторами (сложение и вычитание).

Проиллюстрируем сложение. Пусть даны вектора и , попытаемся найти вектор .

Способ 1. Метод сложения треугольником

Возьмём необходимые вектора и параллельным переносом совместим конец первого вектора ( ) и начало второго ( ) (рис. 1)

Рис. 1. Сложение векторов (правило треугольника)

Тогда вектор, соединяющий начальную точку первого вектора ( ) и конец второго ( ), является вектором ( ).

Способ 2. Метод сложения параллелограммом

Возьмём необходимые вектора и параллельным переносом совместим начало первого вектора ( ) и начало второго ( ) (рис. 2). Параллельным переносом совместим конец каждого вектора с началом другого.

Рис. 2. Сложение векторов (правило параллелограмма)

Тогда вектор, соединяющий общую начальную точку первого ( ) и второго ( ) векторов и общий конец данных векторов, является вектором суммы ( ).

Вывод: в ряде задач, где присутствуют несколько однородных векторных физических величин, часто необходимо найти общий вектор (общую скорость, равнодействующую силу, полный вектор магнитной индукции или электрической напряжённости поля). Тогда необходимо сначала сложить вектора, а потом найти модуль получившегося вектора.Чаще всего первый метод используется в кинематике (сложение скоростей). Второй метод часто используют в динамике.

Источник

Сложение и вычитание векторов

Теорема 1 От любой точки \( K \) можно отложить вектор единственный \( \overrightarrow \) .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором \( \overrightarrow \) .

Из данного выше построения сразу же будет следовать единственность данного вектора.

Сумма векторов. Сложение векторов. Правило треугольника

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Суммой нескольких векторов \( \vec \) , \( \vec \) , \( \vec,\;\ldots \) называется вектор \( \vec \) , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
\( \vec + \vec = \left( <+ , + , + > \right) \)

Читайте также:  Вещно правовые способы защиты права собственности носят характер

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора \( \overrightarrow \) выполняется равенство

Для произвольных точек \( A,\ B\ и\ C \) справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Разность векторов. Вычитание векторов

Разность двух одинаковых векторов равна нулевому вектору :
\( \vec — \vec = \vec <0>\)

Длина нулевого вектора равна нулю:
\( \left| \vec <0>\right| = 0 \)

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
\( \vec — \vec = \left( <, , > \right) \)

Умножение вектора на число

Пусть нам дан вектор \( \overrightarrow \) и действительное число \( k \) .

Определение Произведением вектора \( \overrightarrow \) на действительное число \( k \) называется вектор \( \overrightarrow \) удовлетворяющий следующим условиям:

Длина вектора \( \overrightarrow \) равна \( \left|\overrightarrow\right|=\left|k\right||\overrightarrow| \) ;

Векторы \( \overrightarrow \) и \( \overrightarrow \) сонаправлены, при \( k\ge 0 \) и противоположно направлены, если \( k\le 0 \)

Обозначение: \( \ \overrightarrow=k\overrightarrow \) .

Источник

Сложение и вычитание векторов.

Сложение и вычитание векторов.

Сумма двух векторов. Законы сложения векторов. Правило параллелограмма.

Представим себе такую ситуацию. Направляясь из школы домой, вам захотелось пить и вы решили зайти сначала в магазин, а затем уже домой. Цель достигнута: вы из школы добрались домой. Сейчас мы описали принцип первого правила сложения векторов.

Чтобы найти вектор суммы двух векторов и , нужно:

совместить параллельным переносом начало вектора с концом вектора ;

провести вектор из начала вектора в конец вектора ;

получившийся вектор и есть вектор суммы: .

Если к вектору прибавить нулевой вектор по правилу треугольника, то получим вектор , т.е. справедливо равенство: .

Утверждение. Если и – произвольные точки, то .

Сложение векторов подчиняется алгебраическим законам.

ТЕОРЕМА. Для любых векторов и справедливы равенства:

Доказательство теоремы в случае, когда векторы коллинеарны достаточно простое. Его вы можете провести самостоятельно. Мы рассмотрим случай, когда данные векторы неколлинеарны.

1). Отметим произвольную точку и отложим от этой точки вектор . Воспользуемся правилом треугольника и прибавим к нему вектор . Вектором суммы этих двух векторов является вектор . (Рисунок слева).

Теперь от точки и отложим вектор . По правилу треугольника прибавим к нему вектор . Вектором суммы этих двух векторов является вектор . (Рисунок справа).

параллелограмм и точка совпадает с точкой . Значит, , т.е.

2). От точки отложим вектор , от точки отложим вектор , а от точки – вектор . Найдём суммы векторов по правилу треугольника.

При доказательстве первой формулы получился параллелограмм, причём, из точки выходят два вектора и , а вектор их суммы является диагональю параллелограмма. На основе этого возникает второе правило геометрического сложения векторов.

Чтобы найти вектор суммы двух векторов и , нужно:

совместить параллельным переносом начала векторов и ;

на этих векторах достроить параллелограмм;

вектором суммы является вектор, который лежит на диагонали параллелограмма, имеющий своё начало в начале исходных векторов.

Сумма нескольких векторов.

Сложение нескольких векторов происходит по принципу правила треугольника. Складываются два вектора, к вектору суммы прибавляется следующий вектор и т.д. Приведём пример.

Отметим точку и отложим от неё вектор . Прибавим к нему вектор по правилу треугольника. . Теперь к вектору прибавим вектор . . К вектору прибавляем вектор . . Осталось к вектору прибавить вектор . .

Итак, . Значит, суммой векторов является вектор, с началом в начале первого вектора и концом – в конце последнего. Такое сложение векторов называется правилом многоугольника.

Чтобы найти вектор суммы нескольких векторов, нужно:

последовательно совместить параллельным переносом начало последующего вектора с концом предыдущего;

вектором суммы всех векторов является вектор, с началом в начале первого вектора и концом – в конце последнего.

Определение. Разностью двух векторов и называется такой вектор , что при сложении его с вектором получается вектор .

Вычитание векторов можно производить, руководствуясь двумя понятиями: следствием из правила треугольника сложения векторов; определением разности двух чисел. Разберём каждое из них.

Сложим векторы и по правилу треугольника. По рисунку видно, что . Отсюда, и . Значит, разность двух векторов можно составить, совмещая их начала, либо совмещая их концы. Отсюда два правила:

Чтобы найти вектор разности двух векторов, нужно:

совместить параллельным переносом начала этих векторов;

вектором разности является вектор с началом в конце второго вектора и концом в конце первого вектора.

Чтобы найти вектор разности двух векторов, нужно:

совместить параллельным переносом концы этих векторов;

вектором разности является вектор с началом в начале первого вектора и концом в начале второго вектора.

Далее, из алгебры мы знаем, что для того, чтобы из числа вычесть число , нужно к числу прибавить число, противоположное числу , т.е. . Такое же правило справедливо и для векторов.

Читайте также:  Способы нанесения акрилового лака

ТЕОРЕМА. Для любых векторов справедливо равенство:

1. Найдём разность векторов по I правилу. Вектором разности является вектор (рисунок слева). А теперь найдём сумму векторов по правилу треугольника, где – вектор, противоположный вектору . Вектором суммы является вектор (рисунок справа). Не трудно заметить, что . Они сонаправлены и имеют одинаковые модули.

2. А теперь докажем то же самое аналитически. По определению разности векторов,

Что и требовалось доказать.

Из этой теоремы следует третье правило вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно к первому вектору прибавить вектор, противоположный второму.

Используя это правило вычитания векторов, способ сложения векторов выбирается произвольно.

Вектор является суммой векторов и . Определите, какой из четырёх рисунков верный.

Проведите векторы . Какая геометрическая фигура у вас получилась?

Вектор является разностью векторов и . Определите, какой из четырёх рисунков верный.

Вектор является суммой векторов и . Определите, какой из четырёх рисунков верный.

Выразите вектор через векторы , используя рисунок.

Выразите вектор через векторы , используя рисунок.

Длина вектора равна , а длина вектора равна . Сколько различных целых значений может принимать длина вектора ?

Длина вектора равна , а длина вектора равна . Сколько различных целых значений может принимать длина вектора ?

Длина вектора равна , а длина вектора равна . Сколько различных целых значений может принимать длина вектора ?

Длина вектора равна , а длина вектора равна . Сколько различных целых значений может принимать длина вектора ?

Длина вектора равна , а длина вектора равна . Сколько различных целых значений может принимать длина вектора ?

В квадрате проведены диагонали и . Укажите номера верных утверждений.

– параллелограмм. Найдите сумму векторов .

– прямоугольник. Диагонали и пересекаются в точке . Укажите номера верных утверждений.

параллелограмм. Выразите векторы и через векторы и .

– параллелограмм. Выразите векторы и через векторы и .

– прямоугольник. Выразите векторы и через векторы и .

– параллелограмм. Выразите векторы и через векторы и .

Найдите длины векторов , изображённых на клетчатой бумаге с размерами клетки 1 х 1.

Две стороны прямоугольника равны 20 и 21. Найдите длину суммы векторов и .

Две стороны прямоугольника равны 7 и 24. Найдите длину разности векторов и .

На каждом рисунке найдите длину вектора (размеры клетки 1 х 1).

На каждом рисунке найдите длину суммы векторов и (размеры клетки 1 х 1).

На каждом рисунке найдите длину разности векторов и , изображённых на клетчатой бумаге с размерами клетки 1 х 1.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 795 человек из 78 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 278 человек из 70 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 605 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Теоретическая часть данной разработки содержит определения, свойства, правила, связанные с геометрическим сложением и вычитанием векторов. К каждому понятию предложен рисунок, разобраны примеры. Практическая часть разработки содержит задания на построение суммы и разности векторов, а также аналитическое определение суммы и разности векторов. Есть задания, встречающиеся на ОГЭ.

Номер материала: ДБ-741821

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

В Госдуме предлагают сделать бесплатным проезд на общественном транспорте для детей до 16 лет

Время чтения: 2 минуты

Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст

Время чтения: 1 минута

Когда дети начинают шутить

Время чтения: 2 минуты

В Минпросвещения предложили организовать телемосты для школьников России и Узбекистана

Время чтения: 1 минута

На новом «Уроке цифры» школьникам расскажут о разработке игр

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Оцените статью
Разные способы