Способы вычисления производных функций

Правила вычисления производных

Если следовать определению, то — это предел отношения приращения функции Δ y к приращению аргумента Δ x :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f ( x ) = x 2 + (2 x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f ( x ) = C , C ∈ R 0 (да-да, ноль!)
Степень с рациональным показателем f ( x ) = x n n · x n − 1
Синус f ( x ) = sin x cos x
Косинус f ( x ) = cos x − sin x (минус синус)
Тангенс f ( x ) = tg x 1/cos 2 x
Котангенс f ( x ) = ctg x − 1/sin 2 x
Натуральный логарифм f ( x ) = ln x 1/ x
Произвольный логарифм f ( x ) = log a x 1/( x · ln a )
Показательная функция f ( x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

В общем, константы можно выносить за знак производной. Например:

(2 x 3 )’ = 2 · ( x 3 )’ = 2 · 3 x 2 = 6 x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f ( x ) и g ( x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, ( f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

Задача. Найти производные функций: f ( x ) = x 2 + sin x; g ( x ) = x 4 + 2 x 2 − 3.

Функция f ( x ) — это сумма двух элементарных функций, поэтому:

f ’( x ) = ( x 2 + sin x )’ = ( x 2 )’ + (sin x )’ = 2 x + cos x;

Аналогично рассуждаем для функции g ( x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’( x ) = ( x 4 + 2 x 2 − 3)’ = ( x 4 + 2 x 2 + (−3))’ = ( x 4 )’ + (2 x 2 )’ + (−3)’ = 4 x 3 + 4 x + 0 = 4 x · ( x 2 + 1).

Ответ:
f ’( x ) = 2 x + cos x;
g ’( x ) = 4 x · ( x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike «>равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

( f · g ) ’ = f ’ · g + f · g ’

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f ( x ) = x 3 · cos x; g ( x ) = ( x 2 + 7 x − 7) · e x .

Функция f ( x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’( x ) = ( x 3 · cos x )’ = ( x 3 )’ · cos x + x 3 · (cos x )’ = 3 x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x − x · sin x )

У функции g ( x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g ( x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’( x ) = (( x 2 + 7 x − 7) · e x )’ = ( x 2 + 7 x − 7)’ · e x + ( x 2 + 7 x − 7) · ( e x )’ = (2 x + 7) · e x + ( x 2 + 7 x − 7) · e x = e x · (2 x + 7 + x 2 + 7 x −7) = ( x 2 + 9 x ) · e x = x ( x + 9) · e x .

Ответ:
f ’( x ) = x 2 · (3cos x − x · sin x );
g ’( x ) = x ( x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Читайте также:  Способ применения шунгитового мыла

Производная частного

Если есть две функции f ( x ) и g ( x ), причем g ( x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h ( x ) = f ( x )/ g ( x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Производная сложной функции

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f ( x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f ( x ) = sin ( x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’( x ) = f ’( t ) · t ’, если x заменяется на t ( x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f ( x ) = e 2 x + 3 ; g ( x ) = sin ( x 2 + ln x )

Заметим, что если в функции f ( x ) вместо выражения 2 x + 3 будет просто x , то получится элементарная функция f ( x ) = e x . Поэтому делаем замену: пусть 2 x + 3 = t , f ( x ) = f ( t ) = e t . Ищем производную сложной функции по формуле:

f ’( x ) = f ’( t ) · t ’ = ( e t )’ · t ’ = e t · t ’

А теперь — внимание! Выполняем обратную замену: t = 2 x + 3. Получим:

f ’( x ) = e t · t ’ = e 2 x + 3 · (2 x + 3)’ = e 2 x + 3 · 2 = 2 · e 2 x + 3

Теперь разберемся с функцией g ( x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’( x ) = g ’( t ) · t ’ = (sin t )’ · t ’ = cos t · t ’

Обратная замена: t = x 2 + ln x . Тогда:

g ’( x ) = cos ( x 2 + ln x ) · ( x 2 + ln x )’ = cos ( x 2 + ln x ) · (2 x + 1/ x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’( x ) = 2 · e 2 x + 3 ;
g ’( x ) = (2 x + 1/ x ) · cos ( x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

( x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f ( x ) = ( x 2 + 8 x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8 x − 7 = t . Находим производную по формуле:

f ’( x ) = f ’( t ) · t ’ = ( t 0,5 )’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8 x − 7. Имеем:

f ’( x ) = 0,5 · ( x 2 + 8 x − 7) −0,5 · ( x 2 + 8 x − 7)’ = 0,5 · (2 x + 8) · ( x 2 + 8 x − 7) −0,5 .

Источник

Как найти производную?
Примеры решений

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.

Читайте также:  Способы для возведения крепи

Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример:

Найти производную функции

Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначают или .

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где – постоянное число;

производную степенной функции:
, в частности: , , .

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

В этой связи переходим к рассмотрению правил дифференцирования:

1) Постоянное число можно (и нужно) вынести за знак производной

, где – постоянное число (константа)

Найти производную функции

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:

2) Производная суммы равна сумме производных

Найти производную функции

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Читайте также:  Способ получения моторных масел

Найти производную функции

Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.

3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Эта необычное правило (как, собственно, и другие) следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:

Найти производную функции

Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Найти производную функции

В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:


Готово.

При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока)

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Заодно избавляемся от скобок в числителе, которые теперь не нужны.
Вообще говоря, постоянные множители при нахождении производной можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

Штрихов больше нет, задание выполнено.

На практике обычно (но не всегда) ответ упрощают «школьными» методами:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Время от времени встречаются хитрые задачки:

Найти производную функции

Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?
Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.

В данном случае можно почленно поделить числитель на знаменатель.
Преобразуем функцию:

Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:

Найти производную функции

Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:

Произведение все-таки дифференцировать проще:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

5) Производная сложной функции

Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.

Пример 4: . В ходе решения данного примера следует обратить внимание, на тот факт, что и – постоянные числа, не важно чему они равны, важно, что это — константы. Поэтому выносится за знак производной, а .

Пример 7:

Пример 9:

Пример 12:

Автор: Емелин Александр

(Переход на главную страницу)

«Всё сдал!» — онлайн-сервис помощи студентам

Источник

Оцените статью
Разные способы