- Методы врезания при токарной обработке резьбы Одностороннее боковое врезание Большинство токарных станков с ЧПУ запрограммированы на данны
- Краткое описание методов врезания при токарной обработке резьбы Радиальное врезание Модифицированное врезание Боковое двухстороннее врезание Нарезание резь
- Радиальное врезание является наиболее распространенным способом а зачастую и единственно возможным при точении резьбы на многих типах металлорежущих с
- Нарезание резьбы на токарном станке
- Почему к нарезанию резьбы выдвигаются жесткие требования
- Пластины с полным и неполным профилем
- Многозубые пластины
- Глубина врезания на проход
- Методы врезания
- Выравнивание задних углов
- Миниатюризация и специализация
Методы врезания при токарной обработке резьбы Одностороннее боковое врезание Большинство токарных станков с ЧПУ запрограммированы на данны
388 Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Стр.360
Методы врезания при токарной обработке резьбы Одностороннее боковое врезание Большинство токарных станков с ЧПУ запрограммированы на данны
Методы врезания при токарной обработке резьбы Одностороннее боковое врезание Большинство токарных станков с ЧПУ запрограммированы на данный метод. Одностороннее боковое врезание происходит за счёт смещения по оси Z в направлении подачи данный метод чаще всего используется на практике. Так как неудобная V-образная стружка образуется только при первом проходе, отвод стружки хорошо контролируется. Рекомендуется данный метод при шаге более 1,0 мм или более 24 нитки на дюйм при изготовлении трапецеидальной резьбы в качестве способа устранения вибрации, так как основной объём стружки образуется в направлении подачи для контролируемого стружкообразования Рис. 4.12 Одностороннее боковое врезание Так как данное врезание происходит параллельно стороне профиля резьбы, при данном популярном способе обработки могут возникать такие проблемы, как повышенное трение на стороне, противоположной подаче (режущая пластина не производит здесь обработку). Еще одним недостатком является сложность выполнения программирования режима покадровой отработки и, тем самым, в качестве условия, один цикл резьбы для обработки. Модифицированное одностороннее боковое врезание Данный способ врезания отличается от рассмотренного выше одностороннего бокового врезания тем, что подача происходит не параллельно боковой поверхности. Угол подачи уменьшен по сравнению с углом профиля резьбы прим. на 1-5°. Благодаря этому данный характер врезания имеет все преимущества вышеуказанного одностороннего бокового врезания и при этом лишён недостатка, заключающегося в повышенном трении. За счёт модификации всегда имеется определённый припуск на противоположной стороне. Поэтому профильная пластина Модифицированное производит резание и больше не вызывает трения. одностороннее боковое врезание 5.2.3 Двустороннее боковое врезание Распределение обработки происходит по обеим сторонам. При двустороннем боковом врезании исходная точка прохода поочередно смещается по оси Z в плюсовом и минусовом направлениях. Данный метод обеспечивает значительную стойкость режущего инструмента за счёт равномерного износа вдоль режущей кромки. В данном случае недостатком также является сложность выполнения программирования режима покадровой отработки и, тем самым, в качестве условия, один цикл резьбы для обработки. Рекомендуется данный метод при очень большом шаге при очень острых профилях резьбы Чередование сторон при обработке длинностружечных материалов. 360 GARANT Справочник по обработке резанием Нарезание резьбы 5.2.2
Источник
Краткое описание методов врезания при токарной обработке резьбы Радиальное врезание Модифицированное врезание Боковое двухстороннее врезание Нарезание резь
291 Каталог KORLOY 2014 Металлорежущий инструмент и станочная оснастка Стр.D5
Краткое описание методов врезания при токарной обработке резьбы Радиальное врезание Модифицированное врезание Боковое двухстороннее врезание Нарезание резь
Краткое описание методов врезания при токарной обработке резьбы Радиальное врезание Модифицированное врезание Боковое двухстороннее врезание Нарезание резьбы с мелким шагом. Простота метода. Высокая точность профиля. Повышение стойкости СМП благодаря равномерному распределению нагрузки на 2 режущие кромки. Нарезание резьбы с крупным шагом (менее 16 ниток/дюйм). Применим для обработки материалов с низкой твердостью. Снижение вибраций. Контролирование направления схода стружки. Неравномерный износ режущей кромки Высокая эффективность при нарезании трапецеидальных резьб. И Нарезание резьбы с крупным шагом. Применим для обработки материалов образующих сливную стружку. Повышение стойкости за счет равномерного износа режущих кромок. Снижение вибраций. Контролирование направления схода стружки. О Пластина опорная Общий вид опорных пластин Угол наклона опорной пластины 1,5° Размер пластины 9.525 12.7 15.875 16 22 27 Державка ER(L)H IR(L)H ER(L)H IR(L)H ER(L)H IR(L)H Код заказа ATE16 ATI16 ATE22 ATI22 ATE27 ATI27 Стандартные опорные пластины имеют угол наклона 1.5 О Характеристики марок сплава СМП Марка сплава Рекомендации по применению и физичесхие Характеристики Тип применяемых СМП Марка сплава с покрытием PVD — Широкая универсальность применения — Использование только для изготовления СМП стружколомами. рС5300 — Высокая прочность за счет мелкозернистой структуры. — Высокая устойчивость к окислительному износу обусловленная наличием покрытием на основе TaiN — Высокая износостойкость при высокоскоростной обработке. ERM/IRM СМП тружколома PC3030T Широкая универсальность применения — Высокая прочность за счет мелкозернистой структуры. — Высокая износостойкость за счет покрытием на основе TaiN. — Высокая эффективность применения при обработке нержавеюших сталей и материалов с повышенной твердостью. ERM/IRM СМП тружколома О Область применения марок сплава ISO M Обрабатьваемый материал Углеродистые стали, легированные стали, стальное литье Нержавеющие стали, жаропрочные стали, титановые сплавы Чугуны, алюминиевые и медные сплавы PC5300 PC3030T d L PC5300 PC3030T PC5300 PC3030T 5 Обработка резьбы Технические рекомендации для нарезания резьбы D О
Источник
Радиальное врезание является наиболее распространенным способом а зачастую и единственно возможным при точении резьбы на многих типах металлорежущих с
403 Каталог SANDVIK COROMANT 2000 Токарный инструмент для металлорежущих станков Стр.C62
Радиальное врезание является наиболее распространенным способом а зачастую и единственно возможным при точении резьбы на многих типах металлорежущих с
Радиальное врезание является наиболее распространенным способом а зачастую и единственно возможным при точении резьбы на многих типах металлорежущих станков. Обеспечивает хорошее стружкообразование и равномерный износ режущих кромок пригоден для нарезания мелких резьб. При обработке крупной резьбы существует риск возникновения вибрации и плохого стружкообразова-ния. Первый выбор при нарезании резьбы в материалах упрочняемых в процессе обработки таких как аустенитная нержавеющая сталь. Внимание Не использовать для пластин геометрии С. Рекомендуемые значения глубины врезания за проход даны в таблицах на следующих страницах. C Одностороннее боковое врезание Направление подачи 05ар v 1-5 Одностороннее боковое врезание Величину осевого перемещения между врезаниями можно подсчитать по формуле 05 х значение радиальной подачи (ар) для угла профиля резьбы 60. Для угла 55 величина осевого смещения подсчитывается по формуле 042 х значение радиальной подачи. Это позволяет получить угол врезания на 5 меньше половины угла профиля резьбы (просто угол врезания в дальнейшем). Направление подачи Изменение направления схода стружки Изменять направление схода стружки можно за счет изменения направления и угла врезания что особенно важно для нарезания внутренней резьбы и резьбы с большим шагом когда возникают проблемы с вибрацией и стружкообразованием. Угол врезания должен быть на 3 — 5 меньше угла профиля резьбы для того чтобы обеспечить хорошее качество обрабатываемой поверхности и избежать чрезмерного износа режущих кромок. Геометрия С Для пластин геометрии С одностороннее боковое врезание с углом врезания 1 является единственно возможным способом. Боковое двустороннее врезание В основном применяется при обработке резьб с большим шагом и соответственно профилем. Данный способ врезания обеспечивает равномерный износ режущих кромок пластины и высокую стойкость инструмента. Требует специального программного обеспечения на станках с ЧПУ Обработка резьб крупного профиля Черновую обработку резьбы крупного профиля рекомендуется производить стандартными токарным инструментом типа MTENN с обычными трехгранными пластинами. C 62 SANDVIK Coromant Нарезание резьбы резцами на токарных станках Способы врезания Выбор способа врезания Существуют три способа врезания радиальное боковое одностороннее и боковое двустороннее. На практике выбор способа врезания зависит от типа оборудования обрабатываемого материала геометрии пластины и шага нарезаемой резьбы.
Источник
Нарезание резьбы на токарном станке
Правильный выбор метода и оснастки может оптимизировать процесс нарезания резьбы. Для резьбонарезных инструментов были разработаны усовершенствованные покрытия и марки материалов, используемые для современных токарных резцов в целом. Кроме того, конструктивные улучшения коснулись резьбовых пластин, благодаря чему контроль стружки стал еще более надежным. Однако, несмотря на эти изменения, инженеры-технологи уделяют недостаточно внимания оптимизации операций по нарезанию резьбы, рассматривая данный процесс как нечто неизменное и не поддающееся улучшениям.
В действительности токарный процесс может быть спроектирован более эффективно. Прежде всего, нужно более глубоко разобраться в некоторых принципах нарезания резьбы.
Почему к нарезанию резьбы выдвигаются жесткие требования
К нарезанию резьбы на токарном станке предъявляются более жесткие требования, чем к обычным токарным операциям. Рабочие усилия при нарезании резьбы, как правило, выше, а радиус закругления режущей кромки резьбовой пластины меньше, что снижает ее стойкость.
При токарной обработке подача должна точно соответствовать шагу резьбы. Если шаг составляет 8 ниток на дюйм (25,4 мм), то инструмент должен совершать 8 оборотов на дюйм, проходя 3,175 мм на оборот. Сравните это с обычной токарной операцией, где подача составляет, как правило, около 0,3 мм на оборот. Подача при нарезании резьбы в 10 раз выше, чем при обычном точении, и соответствующие усилия на кромке резьбовой пластины могут увеличиваться от 100 до 1000 раз.
Радиус при вершине режущей кромки, соответствующий такому усилию, составляет обычно 0,4 мм, по сравнению с 0,8 мм для обычной токарной пластины. Что касается резьбовой пластины, данный радиус серьезно ограничен допустимым радиусом на впадине профиля резьбы, определенным соответствующим стандартом. Радиус также ограничен необходимой операцией резания, так как обычная токарная обработка неприменима из-за возможной деформации резьбы.
В результате высоких усилий резания и более плотной их концентрации резьбовые пластины подвергаются гораздо большей нагрузке, чем обычные токарные пластины.
Рис. 1. Пластина с неполным профилем может применяться для различной величины шага при врезании на разную глубину. Наименьший шаг нарезаемой резьбы определяется величиной малого радиуса закругления вершины (не показан на схеме). Наибольший шаг нарезаемой резьбы определяется прочностью зоны закругления вершины
Пластины с полным и неполным профилем
Пластины с неполным профилем обрабатывают впадину резьбы, не достигая вершины (см. рис. 1). Одна пластина может обрабатывать различные виды шагов, вплоть до самого крупного (с наименьшим количеством ниток на дюйм), что определяется прочностью зоны закругления режущей кромки.
Радиус закругления режущей кромки должен быть достаточно малым, чтобы пластина могла обрабатывать резьбы разного размера. Для небольших шагов требуется очень малый радиус, при этом пластина проникает глубже. Например, для обработки резьбы с шагом 8 ниток на дюйм пластиной с неполным профилем необходима глубина врезания 2,7 мм, в то время как та же самая резьба, нарезаемая полнопрофильной пластиной, требует глубины 2 мм. При этом пластина с полным профилем позволяет получить более прочную резьбу. Более того, для обработки резьбы такой пластиной требуется в четыре раза меньше проходов.
Рис. 2. Многозубые пластины имеют ряд последовательных зубьев. Это позволяет увеличить эффективность нарезания резьбы, но усилия резания при этом высоки
Многозубые пластины
Многозубые пластины имеют ряд последовательно расположенных зубьев, где каждый последующий зуб врезается во впадину резьбы глубже, чем предыдущий (см. рис. 2). Количество шагов, требуемых для нарезания резьбы такой пластиной, может быть сокращено на величину вплоть до 80 процентов. Срок службы инструмента значительно больше, чем у однозубых пластин, поскольку на последний зуб приходится лишь половина или третья часть от общего снимаемого металла.
Однако из-за высоких усилий резания данные пластины не рекомендуются для тонкостенных деталей – во избежание сильных колебаний. Кроме того, конструкция заготовки, обрабатываемой такой пластиной, должна иметь достаточно канавок для выхода всех зубьев из зоны резания.
Глубина врезания на проход
Глубина врезания на проход – крайне важный параметр нарезания резьбы. Каждый последующий проход задействует бо́льшую часть режущей кромки пластины. Если глубина врезания на проход постоянна (что не рекомендуется), то усилие резания и интенсивность съема металла могут существенно увеличиваться с каждым проходом.
Например, при нарезании 60-градусной резьбы с постоянной глубиной врезания 0,25 мм на проход, при втором проходе снимается в три раза большее количество металла, чем при первом. И с каждым следующим проходом количество снимаемого металла увеличивается в геометрической прогрессии.
Чтобы избежать этого и сохранить более практичные усилия резания, с каждым проходом глубину врезания необходимо уменьшать.
Рис. 3. Выбор угла врезания оказывает существенное влияние на эффективность процесса
Методы врезания
Существует как минимум четыре метода врезания (см. рис. 3). Мало кто знает, насколько сильно выбор определенного метода может повлиять на эффективность нарезания резьбы.
А. Радиальное врезание
Хотя это самый распространенный метод нарезания резьбы, он наименее рекомендован. Если резец подается радиально (перпендикулярно к оси заготовки), металл снимается с обеих сторон профиля резьбы, в результате чего формируется стружка в форме буквы V. Такая форма стружки трудно поддается разлому, поэтому стружкоотвод может представлять проблему. Кроме того, на обе стороны режущей кромки оказывается сильное тепловое и ударное воздействие, что значительно сокращает срок службы инструмента по сравнению с другими методами врезания.
Рис. 4. Вместо формы буквы V в результате одностороннего бокового врезания образуется стружка, аналогичная получаемой при стандартном точении
В. Одностороннее боковое врезание
В этом методе направление врезания параллельно одной стороне резьбы, и инструмент, как правило, движется вдоль линии под углом 30º. В результате образуется стружка, аналогичная получаемой при обычном точении (см. рис. 4). В сравнении с радиальным врезанием формирование стружки и отделение от режущей кромки происходит легче, что гарантирует лучший отвод тепла. Однако при таком методе вместо резания происходит трение вспомогательной режущей кромки о боковую поверхность резьбы. Это приводит к истиранию, негативно влияет на качество обработки поверхности и может вызывать вибрации.
С. Модифицированное одностороннее боковое врезание (рекомендуется)
Данный метод похож на метод одностороннего бокового врезания, за исключением того, что угол врезания меньше угла профиля резьбы – менее 30º. Он сохраняет преимущества метода одностороннего врезания, при этом проблемы, связанные со вспомогательной кромкой, отсутствуют. Наилучший результат обеспечивается с углом врезания 29½º, но на практике приемлем любой угол от 25 до 29½º.
D. Двухстороннее боковое врезание
В этом случае пластина подается попеременно вдоль обеих сторон профиля резьбы и, следовательно, в процессе задействуются обе стороны режущей кромки. Это позволяет распределить нагрузку и способствует увеличению срока службы инструмента. Однако такое врезание также может вызвать проблемы с отводом стружки, что может ухудшить качество поверхности и стойкость инструмента. Данный метод обычно используется лишь при очень больших величинах шага и для таких форм резьбы, как трапецеидальная и ACME.
Рис. 5. Регулировка относительно угла подъема винтовой линии, как в «наклонной» пластине справа, позволяет выравнивать задние углы главной и вспомогательной кромок. Это обеспечивает более равномерный износ
Выравнивание задних углов
Некоторые резьбовые пластины и державки имеют возможность точного наклона пластины в направлении врезания при изменении угла подъема винтовой линии. Это свойство обеспечивает высокое качество резьбы, предотвращая трение пластины о боковую поверхность профиля. Оно также позволяет продлить срок службы резца в силу равномерного распределения усилий резания по всей длине режущей кромки.
Пластина, не имеющая такой возможности, где режущая кромка подается параллельно осевой линии заготовки, образует неравные задние углы главной и вспомогательной кромок пластины (см. рис. 5). В частности, при крупном шаге это неравенство может стать причиной трения кромки о поверхность профиля резьбы.
Регулируемые системы позволяют изменять угол наклона пластины путем воздействия на головку державки с помощью опорных пластин. Точная регулировка получается в результате выравнивания углов главной и вспомогательной кромок, благодаря чему износ становится более равномерным.
Рис. 6. Данный специальный резьбонарезной инструмент используется для одновременной обработки двух отдельных резьб на шестишпиндельном токарном станке. Резьбы обрабатываются по отдельности. Используемые здесь пластины предназначены для резьбофрезерного инструмента, но в данном случае они применяются в качестве токарных
Миниатюризация и специализация
Резцы со вставными пластинами обеспечивают нарезание внутренней резьбы в отверстиях диаметром вплоть до 7,6 мм. Использование токарных инструментов для нарезания резьбы в таких малых отверстиях дает множество преимуществ. Качество формируемой резьбы, как правило, выше, конструкция пластины способствует отводу стружки из отверстия с незначительным ущербом для резьбы, а возможность индексации пластин позволяет снизить затраты на оснастку.
Для подобных инструментов обычно используется твердый сплав, позволяющий выполнять обработку на низких скоростях. Что же касается нарезания резьбы в малых отверстиях, использование низкой скорости резания является единственно возможным вариантом ввиду ограничений по кинематике станка.
Технологические инновации расширили сферу применения резьбонарезных инструментов, и переход к нарезанию внутренней резьбы малого диаметра резцами – яркий тому пример. Несмотря на широкую номенклатуру стандартных инструментов, производители продолжают сталкиваться с определенными проблемами, оправдывающими применение специализированной оснастки (см. рис. 6.). Особая оснастка, проектируемая в сотрудничестве с поставщиком, – это возможность, которой нельзя пренебрегать при поиске рациональных параметров резца для конкретного вида работ.
Источник материала: перевод статьи
Threading On A Lathe,
Modern Machine Shop
Автор статьи-оригинала:
Стюарт Палмер (Stuart Palmer)
Об авторах:
Стюарт Палмер (Stuart Palmer) – маркетолог израильской компании-производителя режущих инструментов Vargus Ltd., расположенной в г. Нагария.
Майк Канаговски (Mike Kanagowski) – директор компании VNE Corp., которая является партнером Vargus Ltd. и находится в г. Джейнсвилл, штат Висконсин (США).
Источник