Возбуждение синхронных машин
Любая синхронная машина нуждается в процессе возбуждения, т. е. наведения в ней магнитного поля. Для этого применяют два способа — электромагнитное возбуждение и возбуждение постоянными магнитами:
1). Электромагнитное возбуждение – сущность состоит в том, что магнитное поле в магнитной системе машины создаётся постоянным током, протекающим по расположенным на роторе обмоткам возбуждения. Различают:
а). Независимое электромагнитное возбуждение – обмотка возбуждения питается от специального генератора (возбудителя), в качестве которого используют однофазный синхронный генератор постоянного тока. Ротор синхронного генератора и якорь возбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения поступает через контактные кольца и щётки. Для регулирования тока возбуждения в цепь возбуждения возбудителя включают регулировочный реостат. Независимое возбуждение имеют, например, тяговые синхронные генераторы, применяемые в системах переменно-постоянного тока.
б). Бесконтактное электромагнитное возбуждение — обмотка возбуждения питается от генератора переменного тока (возбудителя) через выпрямитель, расположенный на валу синхронной машины вместе с её ротором и якорем возбудителя. Отсутствие контактных колец и щёток позволяет повысить надёжность и КПД машин.
в). Автоматическое электромагнитное самовозбуждение применяется для синхронных генераторов – обмотка возбуждения питается от обмотки статора через понижающий трансформатор и полупроводниковый выпрямитель. Применяют схемы с самовозбуждением в гидрогенераторах, а на подвижном составе в синхронных генераторах, питающих обмотку возбуждения тяговых генераторов и вспомогательных устройств.
2. Возбуждение постоянными магнитами – применяют в синхронных машинах малой мощности, при этом на роторе располагают постоянные магниты. В результате конструкция машины упрощается, становится более надёжной и экономичной. Но из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки этот способ возбуждения применяют для машин мощностью не более нескольких киловатт.
Источник
Синхронные машины: возбуждение, устройство, принцип работы
Синхронными машинами называют устройства частота вращения ротора, в которых она всегда равна или же кратна аналогичному показателю магнитного поля внутри воздушного зазора, которое создается за счет тока проходящего по якорной обмотке. В основе работы данного типа машин лежит принцип электромагнитной индукции.
Возбуждение синхронных машин
Возбуждение синхронных машин может производиться за счет электромагнитного воздействия или же постоянного магнита. В случае с электромагнитным возбуждением применяется специальный генератор постоянного тока, который и питает обмотку, в связи со своей основной функцией данное устройство получило название возбудитель. Стоит отметить, что система возбуждения также делится на два вида по способу воздействия — прямой и косвенный. Прямой метод возбуждения подразумевает, что вал синхронной машины напрямую соединен механическим способом с ротором возбудителя. Косвенный же метод предполагает, что для того чтобы заставить ротор вращаться используется другой двигатель, например асинхронная электромашина.
Наибольшее распространение сегодня получил именно прямой метод возбуждения. Однако в тех случаях, когда предполагается работа системы возбуждения с мощными синхронными электромашинами применяют генераторы независимого возбуждения, на обмотку которых ток подается с другого источника постоянного тока, называемого подвозбудителем. Несмотря на всю громоздкость, данная система позволяет добиться большей стабильности в работе, а также более тонкой настройки характеристик.
Устройство синхронной машины
У синхронной электрической машины существует две основных составляющих части: индуктор (ротор) и якорь (статор). Самой оптимальной и потому распространенной на сегодняшний день является схема, когда якорь располагают на статоре, в то время как индуктор располагается на роторе. Обязательным условием для функционирования механизма является наличие между этими двумя частями воздушной прослойки. Якорь в данном случае представляет собой неподвижную часть устройства (статор). Он может состоять как из одной, так и из нескольких обмоток, в зависимости от необходимой мощности магнитного поля, которое он должен создавать. Сердечник статора, как правило, набирается из отдельных тонких листов электротехнической стали.
Индуктор в синхронных электрических машинах представляет собой электромагнит, при этом концы его обмотки выводятся непосредственно на контактные кольца на валу. Во время работы индуктор возбуждается постоянным током, благодаря которому ротор и создает электромагнитное поле, взаимодействующее с магнитным полем якоря. Таким образом, благодаря постоянному току, возбуждающему индуктор, достигается постоянная частота вращения магнитного поля внутри синхронной машины.
Принцип действия синхронных машин
В основе принципа работы синхронной машины лежит взаимодействие двух типов магнитных полей. Одно из этих полей образуется якорем, другое же возникает вокруг возбуждаемого постоянным током электромагнита – индуктора. Непосредственно после выхода на рабочую мощность магнитное поле создаваемое статором и вращающееся внутри воздушной прослойки, сцепляется с магнитными полями на полюсах индуктора. Таким образом, для того чтобы синхронная машина достигла рабочей частоты вращения, требуется определенное время на ее разгон. После того как машина разгоняется до необходимой частоты, на индуктор подается питание от источника постоянного тока.
Источник
Возбуждение синхронных машин
Способы возбуждения и устройство синхронных машин
При рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС.
Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения — наведения в ней магнитного поля.
Основным способом возбуждения синхронных машин является электромагнитноевозбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле.
До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1)и подвозбудителя (r2).
В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах большой мощности — турбогенераторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.
Рис. 19.1. Контактная (а) и бесконтактная (б) системы
электромагнитного возбуждения синхронных генераторов
Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора.
Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе.
В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока.
Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД.
В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.
Рис. 19.2. Принцип самовозбуждения синхронных генераторов
На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки.
В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А.
Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности).
В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1).
Источник
Системы возбуждения синхронных машин
В синхронных машинах применяются несколько систем возбуждения.
Электромашинная система возбуждения с возбудителем постоянного тока (рис. 1). В этой системе в качестве источника используется специальный генератор постоянного тока (ГПТ), называемый возбудителем.
Системы возбуждения делятся на два типа – прямые и косвенные. В прямых системах возбуждения якорь возбудителя соединен с валом синхронной машины. В косвенных системах возбуждения возбудитель приводится во вращение двигателем, который питается от шин собственных нужд электростанции или вспомогательного генератора. Вспомогательный генератор может быть соединен с валом синхронной машины или работать автономно. Прямые системы более надежны, так как при аварийных ситуациях в энергосистеме ротор возбудителя продолжает вращаться вместе с ротором синхронной машины и обмотка возбуждения сразу не обесточивается.
Рис. 1. Электромашинная система возбуждения: LG — обмотка возбуждения синхронного генератора; LE — обмотка возбуждения возбудителя GE; RШ1 — регулировочное сопротивление
Классическая система возбуждения синхронных машин состоит из возбудителя в виде генератора параллельного возбуждения на общем валу с синхронной машиной (электромашинный возбудитель). У тихоходных машин мощностью до 5000 кВт для уменьшения массы и стоимости возбудителей последние иногда соединяют с валом синхронной машины с помощью клиноременной передачи. Гидрогенераторы также обычно имеют возбудитель на одном валу с генератором.
Для гашения магнитного поля применяется автомат гашения поля (АГП), который состоит из контакторов K1, K2 и гасительного (разрядного) резистора RP. Гашение поля проводится в следующем порядке. При включенном контакторе K1 включается контактор K2, замыкающий обмотку возбуждения на резистор , где RB—сопротивление обмотки возбуждения. Затем происходит размыкание контактора К1, и ток в цепи обмотки возбуждения генератора начинает уменьшаться (затухать) с постоянной времени
(LB — индуктивность обмотки возбуждения) в соответствии с уравнением
(рис. 2).
Ток возбуждения можно было бы снизить до нуля выключением только одного контактора К1 без включения гасительного резистора RP. Ток возбуждения в этом случае исчез бы практически мгновенно. Но мгновенный разрыв цепи возбуждения недопустим, так как из-за большой индуктивности обмотки возбуждения в ней индуцировалась бы большая ЭДС самоиндукции , превышающая в несколько раз номинальное напряжение, в результате чего возможен пробой изоляции этой обмотки. Кроме того, в контакторе К1 при разрыве выделялась бы большая энергия, запасенная в магнитном поле обмотки возбуждения, и из-за большой дуги произошло бы разрушение контактов. Для крупных машин затухание тока возбуждения при наличии гасительного резистора происходит с постоянной времени около 1 с.
Форсировка возбуждения осуществляется шунтированием резистора RШ1, включенного в цепь возбуждения возбудителя.
Рис. 2. Затухание тока возбуждения при гашении поля
Однако у мощных тихоходных генераторов с nр=60-150 об/мин размеры и стоимость возбудителя в связи со значительной его мощностью и тихоходностью получаются большими. Кроме того, тихоходные возбудители вследствие своих больших размеров обладают большой электромагнитной инерцией, что снижает эффективность автоматического регулирования и форсировки возбуждения. Поэтому применяют также системы возбуждения в виде отдельного быстроходного агрегата (nр=750-1500 об/мин), состоящего из асинхронного двигателя и генератора постоянного тока. Асинхронный двигатель при этом получает питание от специального вспомогательного синхронного генератора, расположенного на одном валу с главным гидрогенератором, а в некоторых случаях — с шин собственных нужд гидростанции или с выводов главного гидрогенератора. В последнем случае возбудительный агрегат подвержен влиянию аварий в энергосистеме (короткие замыкания и пр.), и поэтому для повышения его надежности приводные асинхронные двигатели выполняют с повышенным максимальным моментом (Мmax ≥4 Мн), а иногда эти агрегаты снабжают также маховиками. В виде отдельных возбудительных агрегатов выполняются также агрегаты резервного возбуждения электростанций, служащие для резервирования собственных возбудителей генераторов в случае аварий и неисправностей.
Турбогенераторы мощностью до Рн= 100 МВт также обычно имеют возбудители в виде генераторов постоянного тока на своем валу. Однако при Рн > 100 МВт мощность возбудителей становится настолько большой, что их выполнение при nр= 3000-3600 об/мин по условиям коммутационной надежности оказывается затруднительным или даже невозможным. При этом применяются разные решения. Например, за границей широко используются возбудители со скоростью вращения nр=750 — 1000 об/мин, соединяемые с валом турбогенератора с помощью редуктора, а также возбудительные агрегаты с асинхронными двигателями, получающими питание с шин станции или с выводов генератора.
Мощность возбудителя обычно равна 0,3—3 % мощности синхронного генератора. Он приводится во вращение от вала синхронного генератора. Ток возбуждения крупной синхронной машины IB относительно велик и составляет несколько сотен и даже тысяч ампер. Поэтому его регулируют с помощью реостатов, установленных в цепи возбуждения возбудителя. Возбуждение возбудителя осуществляется по схеме самовозбуждения (рис. 1) или независимого возбуждения от специального генератора постоянного тока, называемого подвозбудителем (рис. 3). Подвозбудитель работает с самовозбуждением, и сопротивление резистора RШ2 в процессе работы генератора не изменяется.
Рис. 3. Электромашинная система возбуждения с подвозбудителем: LG — обмотка возбуждения синхронного генератора; LE — обмотка возбуждения Возбудителя GE; LA — обмотка возбуждения подвозбудителя GEA
Компаундированная система возбуждения с возбудителем постоянного тока (рис. 4). В современных системах возбуждения широко применяется принцип компаундирования, т. е. автоматическое изменение намагничивающей силы возбуждения при изменении тока нагрузки синхронного генератора. Так как в обмотке якоря синхронной машины протекает переменный ток, а в обмотке возбуждения 2— постоянный ток, то в схемах компаундирования синхронных машин применяются полупроводниковые выпрямители.
В приведенной на рис. 4 принципиальной схеме компаундированной системы возбуждения с возбудителем постоянного тока обмотка возбуждения возбудителя 4 подключена к якорю возбудителя 3 с реостатом 6 и, кроме того, к выпрямителям 9, получающим питание от последовательных трансформаторов 7. На холостом ходу генератора обмотка 4 получает питание только от якоря 3. По мере увеличения тока нагрузки генератора 1 напряжение вторичной обмотки трансформатора 7 будет расти, и уже при небольшой нагрузке это напряжение, выпрямленное выпрямителем 9, сравняется с напряжением обмотки 4. При дальнейшем увеличении нагрузки обмотка 4 будет подпитываться от трансформатора 7 и, поэтому ток этой обмотке и ток возбуждения генератора будут расти с увеличением нагрузки.
При увеличении сопротивления установочного реостата 8 напряжение, подаваемое на выпрямители 9, и компаундирующее действие трансформатора 7 будут расти. При коротких замыканиях компаундирующее устройство осуществляет форсировку возбуждения.
Рис. 4. Система возбуждения с токовым компаундированием
Компаундирующее действие схемы рис. 4 зависит только от значения тока нагрузки и не зависит от его фазы. Поэтому при индуктивной нагрузке это действие слабее, чем при активной нагрузке. Такое компаундирование называется токовым, и при этом постоянство напряжения U в пределах диапазона нормальных нагрузок удается сохранять с точностью до ± (5—10)%. Такая точность для современных установок недостаточна, и поэтому в схемах рис. 4 применяется дополнительный корректор или автоматический регулятор напряжения //, который соединен с помощью трансформатора 10 с зажимами генератора, а также с установочным реостатом 8. Регулятор 11 реагирует на изменения напряжения U и тока / и питает постоянным током дополнительную обмотку возбуждения возбудителя 5.
Вентильные системы возбуждения могут быть построены на большие мощности и являются более надежными, чем электромашинные. Различают три разновидности вентильных систем возбуждения: с самовозбуждением, независимую и бесщеточную.
В системе с самовозбуждением (рис. 6) энергия для возбуждения синхронной машины отбирается от обмотки якоря основного генератора, а затем преобразуется статическим преобразователем ПУ (тиристорный преобразователь) в энергию постоянного тока, которая поступает в обмотку возбуждения. Начальное возбуждение генератора происходит за счет остаточного намагничивания его полюсов.
Рис. 6. Вентильная система возбуждения синхронного генератора с самовозбуждением: LG — обмотка возбуждения генератора; ПУ — преобразовательное устройство с регулятором напряжения; TV — трансформатор напряжения, снижающий подводимое к обмотке возбуждения напряжение; ТА — трансформатор тока, служащий для поддержания напряжения возбуждения при изменении нагрузки генератора
В независимой системе вентильного возбуждения (рис. 7) энергия для возбуждения получается от специального возбудителя GN, выполненного в виде трехфазного синхронного генератора. Ротор его расположен на валу главного генератора. Переменное напряжение возбудителя выпрямляется и подается в обмотку возбуждения.
Разновидностью независимой системы вентильного возбуждения является бесщеточная система возбуждения. В этом случае на валу основной синхронной машины размещается якорь возбудителя переменного тока с трехфазной обмоткой.
Рис. 7. Вентильная независимая система возбуждения: GN — возбудитель переменного тока (синхронный); LN — обмотка возбуждения возбудителя; GEA — подвозбудитель;
LA — обмотка возбуждения подвозбудителя; ПУ — преобразовательное устройство с регулятором напряжения
Переменное напряжение этой обмотки через выпрямительный мост, закрепленный на валу машины, преобразуется в постоянное и непосредственно (без колец) подается на обмотку возбуждения основного генератора. Обмотка возбуждения возбудителя располагается на статоре и получает питание от подвозбудителя или регулятора напряжения.
Синхронные машины с возбуждением от постоянных магнитов. Особенностью этих машин является то, что для создания магнитного поля возбуждения у них используются постоянные магниты. Постоянные магниты чаще всего размещаются на роторе, благодаря чему машина становится бесконтактной. Синхронные машины с постоянными магнитами широко используются в качестве генераторов небольшой мощности и микродвигателей.
Преимуществами машин с постоянными магнитами являются простота конструкции, отсутствие скользящего контакта, высокий КПД и меньший нагрев из-за отсутствия потерь в обмотке: возбуждения и скользящем контакте. Большим достоинством этих машин является также отсутствие источника постоянного тока для их возбуждения.
К недостаткам таких машин следует отнести сложность регулирования магнитного потока, высокую стоимость, малую предельную мощность (из-за невысокой механической прочности ротора из постоянных магнитов), а также повышенную массу машин средней мощности.
Синхронные генераторы с постоянными магнитами выпускаются на мощности, не превышающие нескольких десятков киловатт. Широкое распространение получили синхронные двигатели с постоянными магнитами и асинхронным пуском. Роторы таких двигателей сочетают в себе элементы синхронного двигателя — постоянные магниты и асинхронного двигателя — беличью клетку, необходимую для пуска.
4. Синхронные машины с возбуждением от постоянных магнитов
Особенностью этих машин является то, что для создания магнитного поля возбуждения у них используются постоянные магниты. Постоянные магниты чаще всего размещаются на роторе, благодаря чему машина становится бесконтактной. Синхронные машины с постоянными магнитами широко используются в качестве генераторов небольшой мощности и микродвигателей.
Преимуществами машин с постоянными магнитами являются простота конструкции, отсутствие скользящего контакта, высокий КПД и меньший нагрев из-за отсутствия потерь в обмотке: возбуждения и скользящем контакте. Большим достоинством этих машин является также отсутствие источника постоянного тока для их возбуждения.
К недостаткам таких машин следует отнести сложность регулирования магнитного потока, высокую стоимость, малую предельную мощность (из-за невысокой механической прочности ротора из постоянных магнитов), а также повышенную массу машин средней мощности.
Синхронные генераторы с постоянными магнитами выпускаются на мощности, не превышающие нескольких десятков киловатт. Широкое распространение получили синхронные двигатели с постоянными магнитами и асинхронным пуском. Роторы таких двигателей сочетают в себе элементы синхронного двигателя — постоянные магниты и асинхронного двигателя — беличью клетку, необходимую для пуска.
Постоянные магниты могут иметь радиальное и аксиальное расположение на роторе. В первом случае магнит 1 имеет форму звездочки (рис. 7), на нее напрессовывается стальной кольцевой пакет 2, в пазах которого располагаются стержни беличьей клетки.
Рис. 7. Синхронный двигатель с радиальным расположением постоянных магнитов на роторе: 1 — постоянные магниты; 2 — пакет ротора; 3 — статор
В стали кольцевого пакета для уменьшения потоков рассеяния магнитов выполняются межполюсные прорези. Во втором случае на валу располагается ротор 2 по типу ротора асинхронного двигателя, и с одного или обеих сторон от этого пакета размещаются постоянные магниты 1 (рис. 8), Асинхронный пуск двигателя с постоянными магнитами имеет ту особенность, что кроме двигательного (асинхронного) момента в этом случае возникает еще тормозной (генераторный) момент. Тормозной момент появляется в результате взаимодействия магнитного поля возбужденных полюсов ротора с наведенными им токами в обмотке статора 3. На рис. 9 показаны кривые асинхронного Ма, тормозного МT и результирующего М моментов двигателя при асинхронном пуске.
Рис. 8. Синхронный двигатель с аксиальным расположением постоянных магнитов на роторе: I — постоянный магнит; 2 — пакет ротора; 3 — статор
Рис. 9. Пусковые характеристики двигателя с постоянными магнитами
Пусковые характеристики у двигателей с постоянными магнитами хуже, чем у гистерезисных двигателей, но они имеют лучшие энергетические показатели, повышенную перегрузочную способность, стабильность частоты вращения.
Источник