- Способы возбуждения обмоток электродвигателя
- В этой статье я расскажу о том, что такое возбуждение в двигателях постоянного тока и «с чем его едят».
- Теперь рассмотрим вариант раздельного подключения рабочей и возбуждающей обмоток. Такой движок именуется мотором с независимым возбуждением.
- Как я уже говорил, разновидностью ДПТ независимого возбуждения считаются устройства, имеющие в качестве возбудителя постоянные магниты. Скажу несколько слов и о них.
- Теперь о последовательном включении обмоток (двигатели с последовательным возбуждением).
- Последним вариантом включения движков постоянного тока считается их смешанное включение.
- Последовательное, параллельное и смешанное возбуждение в двигателях постоянного тока Электродвигатель постоянного тока работает от источников постоянного тока. В электродвигателе происходит превращение электрической энергии в механическую. Электрический двигатель постоянного тока состоит из ротора (якоря) и статора (индуктора, магнита, обмотки возбуждения). Статор может быть либо постоянным магнитом, либо электромагнитом. Якорь во многих электродвигателях представляет собой проволочные петли, надетые на сердечник из мягкого железа, на котором реверсируется питание его обмотки (посредством коммутатора или управляющей электронной схемы). Большинство двигателей, работающих на постоянном токе, имеют коммутатор, состоящий из коллектора и щеток. Щетки установлены на статоре и не вращаются, а коллектор соединен с катушкой установленной на роторе (якоре). Современные бесколлекторные двигатели (или бесщеточные двигатели, BLDC) имеют якорь из постоянных магнитов и не имеют коллектора и щеток, а работают со специальной электронной схемой. Якорь двигателя двигателя постоянного тока имеет очень низкое сопротивление. По этой причине при запуске двигателя последовательно с ним включается переменное сопротивление, которое выводится по мере того, как якорь набирает скорость. Когда проводник с током вносится в магнитное поле, на него начинает действовать сила, зависящая от трех факторов: от напряженности поля, от величины тока и от длины проводника. Сила, приводящая во вращение якорь электродвигателя, зависит от тех же трех факторов. При этом эффективная длина обмотки приблизительно равна удвоенной длине якоря, умноженной на число витков. Двигатель постоянного тока в разобранном виде Электромагнит двигателя постоянного тока можно возбудить тремя различными способами, и в каждом из этих способов возбуждения двигатель работает по-разному. Обмотка электромагнита и якорь могут быть соединены тремя способами: последовательно (сериесное возбуждение), параллельно (шунтовое возбуждение) и смешанно (компаунд-возбуждение). В электродвигателе постоянного тока с последовательным возбуждением весь ток проходит как через якорь, так и через обмотку электромагнита. Следовательно, вращающий момент, действующий на якорь, изменяется пропорционально квадрату тока, поскольку крутящее усилие зависит от тока в якоре и от напряженности магнитного поля, которая линейно меняется в зависимости от тока в обмотке электромагнита. В результате, когда действие большой нагрузки замедляет вращение якоря двигателя с последовательным возбуждением, так что обратная э. д. с. становится малой, то через якорь и обмотку электромагнита идет сильный ток, создающий значительную силу для вращения якоря. Двигатели постоянного тока с последовательным возбуждением используются в трамваях, электровозах, автомобильных стартерах и в других машинах, которые работают в условиях быстро прикладываемых значительных нагрузок. Обычно такие двигатели соединяются с приводимыми в движение машинами с помощью шестереночных, а не ременных передач, поскольку если при работе двигателя нагрузка на него резко снижается, то двигатель разгоняется до опасной скорости (они не имеют ограничения скорости) . На холостом ходу двигатель может работать на высоких оборотах, когда существует риск механического разрыва ротора с возможным травмированием оператора. Современные технологии с преобразователем частоты позволяют полностью и в равной степени заменить такие двигатели на трехфазные асинхронные двигатели, а в последних разработках — на трехфазные синхронные двигатели с постоянными магнитами на роторе. Обладая такой же мощностью и такими же характеристиками крутящего момента, они меньше, легче и позволяют рекуперацию энергии, если это позволяют условия эксплуатации источника питания. Схема подключения электродвигателя В двигателя постоянного тока с параллельным возбуждением ток разветвляется, одна часть его идет через якорь, а другая — через обмотку электромагнита. При этом полный ток в обеих ветвях равен току, питающему двигатель. В результате вращающий момент якоря пропорционален первой степени тока, тогда как в двигателях с последовательным возбуждением этот момент меняется как квадрат тока. Когда якорь двигателя с параллельным возбуждением начинает вращаться медленнее при повышении нагрузки на двигатель, через якорь пойдет больший, а через обмотку электромагнита — меньший ток. В результате вращающий момент останется неизменным. Поэтому двигатель в течение всего времени, пока к нему приложена нагрузка, будет работать на скорости, пониженной по сравнению с его холостым ходом. Такое подключение двигателя позволяет независимо регулировать и определять ток в обмотке возбуждения статора и обмотке ротора (якорь). Это позволяет изменять скорость и крутящий момент двигателя. Двигатели с параллельным возбуждением непригодны для больших нагрузок. По этой причине они находят применение в таких установках, где нагрузка постоянная и где требуется постоянная скорость вращения, например электрических вентиляторах, воздуходувках, жидкостных насосах и т. п. Электродвигатели постоянного тока со смешанным возбуждением имеют две обмотки возбуждения (одну для параллельного включения, другую — для последовательного). Они не разгоняются при ослаблении нагрузки и вместе с тем пригодны для больших нагрузок. Почему это так, предоставляю объяснить читателю и поделиться своими идеями в комментарии к статье. Двигатели этого типа применяются в подъемниках, штамповочных прессах и других машинах, где в начальный момент работы машины необходимы значительные усилия. Последовательное возбуждение во многих случаях выключается после набора двигателем определенной скорости. Вопрос. Какого вида возбуждения двигатель постоянного тока показан на фотографии в статье? Источник ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА Двигатели постоянного тока широко востребованы в бытовой аппаратуре, для питания которой используется постоянное напряжение. Существуют сложности с их запуском, которые возникают из-за того, что работа электрических машин основана на взаимодействии подвижного ротора с вращающимся электромагнитным (э/м) полем статора. В случае постоянного напряжения питания формирование вращающегося магнитного поля невозможно без применения вспомогательных узлов и устройств, выбор которых определяет существующее разнообразие модификаций двигателей такого типа. Разновидности двигателей постоянного тока. Электрические машины этого типа различаются по способу получения вращающегося магнитного поля, зависящего от конструкции вспомогательного узла. В соответствие с этим все двигатели делятся на коллекторные; бесколлекторные; устройства с внешним возбуждением. В первом случае для подачи питания на ламели ротора используются специальные графитовые щетки. Менять полярность подаваемого напряжения, создавая аналог вращающегося магнитного поля, удается за счет разорванной конструкции токоподающего узла (слева на рисунке). В бесколлекторном двигателе вращающееся э/м поле формируется специальным коммутирующим узлом. Функцию последнего выполняют электронные схемы на полупроводниковых элементах, имеющие различное исполнение. Благодаря этому удается получить бесконтактное взаимодействие полей, без щеток и коллектора. Типичный представитель такого электродвигателя – мотор-колесо, известное большинству любителей езды на малогабаритных транспортных средствах. Еще один распространенный способ запуска двигателя – включение в схему специальных обмоток возбуждения. СПОСОБЫ ВОЗБУЖДЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА Под возбуждением электродвигателей постоянного тока (ПТ) понимается эффект создания в них ЭДС, обеспечивающей вращение ротора. Их рабочие характеристики зависят от того, каким образом включена обмотка возбуждения (ОВ) по отношению к цепи якоря. Наиболее распространены следующие схемы подключения: с независимым возбуждением (две обмотки не связаны одна с другой, а ОВ питается от отдельного источника); с параллельным возбуждением или шунтируемого типа (в них ОВ включена параллельно якорной цепочке); с последовательным возбуждением (ОВ включается последовательно с якорной обмоткой). В ряде случаев, связанных с особенностями эксплуатации двигателей постоянного тока, применяется комбинированная схема включения. Иногда ее называют «смешанной» или «компаундной» (в ней последовательное подключение совмещается с параллельным). Рассмотрим каждый из перечисленных вариантов более подробно. При этой схеме подключения обмотка возбуждения электрически не связана с катушкой якоря (рис.1). Для снижения тепловых потерь и создания необходимой величины ЭДС число витков в ней делается достаточно большим, что позволяет снизить ток возбуждения. Регулировать ток в якоре можно посредством резистора Rдоб, включенного последовательно. Частоту вращения можно менять резистором Rрег. Возможность независимого управления параметрами двигателя относят к плюсам этой схемы. Ее минус – необходимость использования дополнительного источника питания, что приводит к увеличению материальных издержек. Применение схемы с независимым возбуждением определяется особенностями конструкции управляемого электропривода. Электрическая схема подключения с параллельным возбуждением в целом напоминает рассмотренную выше. Ее особенность – наличие электрической связи ОВ с якорной цепью (рис.2). Эффективность работы двух рассмотренных схем практически одинакова. Преимущество этого способа включения в том, что в данной ситуации отпадает необходимость в дополнительном источнике питания. Ее минус – невозможность раздельной регулировки параметров электродвигателя. Принцип работы электродвигателя с последовательным возбуждением. Особенностью этой схемы является последовательное включение ОВ и якорной цепочки (рис.3). При таком варианте подключения ток якоря является одновременно и током возбуждения (Iя =Iв). Это вынуждает производителей оборудования наматывать ОВ проводом того же сечения, что и у якоря. Недостаток этой схемы – в том, что скорость двигателя зависит от нагрузки на валу. При ее увеличении падение напряжения на обмотках и магнитный поток возрастают. А это приводит к сильному падению скорости вращения. При снижении нагрузки частота вращения двигателя резко возрастает и может достичь опасных значений (он может начать работать «вразнос»). Данный вариант применяют в случаях, когда необходимо выдерживать большое пусковое усилие (момент). Или же когда двигателю предстоит работать в режиме кратковременных перегрузок. Схемы с последовательным запуском используются в тяговых двигателях (в метро, трамваях, электровозах и троллейбусах). Принцип действия двигателя со смешанным возбуждением. К каждому из полюсов системы со смешанным возбуждением подключено две обмотки: последовательная и параллельная (рис.4). Их допускается включать таким образом, чтобы магнитные потоки суммировались (согласное подключение), либо вычитались один из другого (встречное включение). В зависимости от того, как соотносятся части каждого из магнитных потоков, двигатель постоянного тока со смешанным возбуждением приближаются по своим свойствам к одному из уже рассмотренных ранее вариантов. Такие схемы применяются в ситуациях, когда необходим большой по величине пусковой момент и одновременно невозможно обойтись без регулировки частоты вращения вала при переменных нагрузках. БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА Бесколлекторным называют двигатель, ток в статорных обмотках которого коммутируется особыми электронными устройствами («драйверами» или «инверторами»). Такой коммутатор состоит из набора полупроводниковых элементов, создающих вращающее поле путем подачи тока в соответствующую обмотку. Скорость вращения вала у агрегатов этого типа значительно выше, чем у коллекторных с постоянными магнитами. Это позволяет увеличить удельную мощность двигателя и повысить его КПД. Устройство и принцип действия. Любой бесколлекторный двигатель состоит из следующих основных узлов: статор с обмотками; вращающийся ротор с постоянными магнитами; контроллер, обеспечивающий формирование в статоре вращающегося э/м поля. На статоре бесколлекторного двигателя располагаются 3 обмотки, которые, как и у электродвигателей переменного тока называются фазными. Допустимость такого названия объясняется следующим. Несмотря на того, что эти агрегаты работают от источника постоянного напряжения (аккумуляторов) – управляющий коммутацией обмоток контроллер включает ток поочередно. Это приводит к формированию в них переменной составляющей в виде прямоугольных импульсов. Они и создают видимость трехфазного вращающегося э/м поля, характерного для коллекторных электродвигателей синхронного или асинхронного типа. В зависимости от того, по какой схеме включаются обмотки статора («звезда» или «треугольник») система содержит соответственно четыре или три рабочих шины. Катушки наматываются в пазах между зубьями сердечника статора, распределяясь равномерно по фазам. В статор нередко интегрируются датчики Холла, фиксирующие текущее положение ротора. С их помощью удается передавать информацию контроллеру, который в каждый момент «знает», в какой точке находится ротор и подает питающий импульс на нужную обмотку. Такая возможность повышает эффективность функционирования двигателя с максимально возможной отдачей (мощностью). © 2014-2021 г.г. Все права защищены. Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов. Источник
- ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
- СПОСОБЫ ВОЗБУЖДЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
- БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
Способы возбуждения обмоток электродвигателя
Доброго времени суток, дорогие читатели!
В этой статье я расскажу о том, что такое возбуждение в двигателях постоянного тока и «с чем его едят».
Наверное, каждый из нас в детстве имел игрушки с электроприводом. Те же, кто в те годы отличался любопытностью, не упустили возможность разобрать эти игрушки, дабы посмотреть, а что там внутри.
Заглянув внутрь такой игрушки, нами был найден маленький электромоторчик постоянного тока. Естественно, тогда мы и не задумывались над тем, почему он работает. Некоторые из нас, найдя в игрушке моторчик, решались разобрать и его. Вот эти-то любопытные товарищи, разобрав моторчик, находили там постоянный магнит (иногда не один), щетки и якорь с коллектором.
Что такое возбуждение в двигателях постоянного тока
Так вот, как раз постоянный магнит и является простейшей системой возбуждения для моторов постоянного тока. Ведь якорь моторчика вращается только тогда, когда вокруг него присутствует постоянное магнитное поле, которое и создается при помощи постоянного магнита.
Двигатели постоянного тока промышленных масштабов в качестве возбудителей используют специальные обмотки, именуемые обмотками возбуждения.
Подключение же этих обмоток может быть самым различным. Они могут включаться параллельно якорю, последовательно с ним, смешано и, даже, независимо от них.
Возбуждающая обмотка состоит из значительно большего числа витков, нежели якорная. В связи с этим ток якорной обмотки в десятки раз превосходит ток возбуждающей. Скорость вращения такого движка может меняться в зависимости от нагрузки и магнитного потока. Благодаря свойствам подключения, движки параллельного включения довольно мало подвержены перемене частоты вращения.
Теперь рассмотрим вариант раздельного подключения рабочей и возбуждающей обмоток. Такой движок именуется мотором с независимым возбуждением.
Скорость такого движка может регулироваться при помощи смены сопротивления якорной цепи, или магнитного потока.
Тут есть небольшой нюансик: не стоит слишком уменьшать ток возбуждения при таком включении двигателя, поскольку это чревато очень большим подъемом якорного тока. Тем же самым опасен и обрыв цепи возбуждения этих двигателей. Кроме того, если нагрузка мотора с таким включением мала, либо при его включении на холостой ход может произойти такой сильный его разгон, что возникнет опасность для движка.
Как я уже говорил, разновидностью ДПТ независимого возбуждения считаются устройства, имеющие в качестве возбудителя постоянные магниты. Скажу несколько слов и о них.
Поскольку ДПТ и машины синхронного типа могут использовать вместо возбудителей постоянные магниты, то подобный вариант считается достаточно привлекательным. И вот почему:
- у такого устройства снижено потребления тока за счет уменьшения числа обмоток, в результате чего такие показатели подобных машин, как КПД оказываются выше.
- С использованием вместо возбудителя постоянных магнитов упрощается конструкция возбуждающих цепей движка, что повышает его надежность, ведь постоянный магнит не требует питания, следовательно у такого мотора нет токосъемного узла на роторе.
Теперь о последовательном включении обмоток (двигатели с последовательным возбуждением).
В этом варианте подключения якорный ток будет являться и возбуждающим. Это становится причиной изменения магнитного потока в сильной зависимости от нагрузки. Это является причиной большой нежелательности пуска их на холостом ходу и при маленькой нагрузке.
Применение же такое включение нашло там, где требуется значительный момент пуска, либо возможность выдерживания кратковременных перегрузок. В связи с этим их применяют, как средства тяги для трамваев, троллейбусов, электровозов, метро и подъемных кранов. Кроме того, их применяют, как средство запуска для ДВС (в качестве стартеров).
Последним вариантом включения движков постоянного тока считается их смешанное включение.
Каждый из полюсов этих моторов оснащен парой обмоток, одна из которых параллельная, а другая – последовательная. Подключать их возможно двумя способами:
- Согласный метод (в этом случае токи складываются)
- Встречный вариант (вычитание токов)
Соответственно, в зависимости от варианта подключения (от чего меняется и соотношение магнитных потоков) такой мотор может оказаться приближен либо к устройству, имеющему последовательное возбуждение, либо к движку с параллельным возбудом.
В большинстве случаев основной обмоткой у них считают последовательную обмотку, а параллельную – вспомогательной. За счет параллельной обмотки у таких моторов скорость при небольших нагрузках, практически не растет.
Если требуется получение значительного момента при пуске и возможность регулирования скорости на переменных нагрузках, используется подключение согласного типа. Встречное же подключение используется при необходимости получения постоянной скорости при изменяющейся нагрузке.
Если возникает необходимость реверсирования ДПТ (смены направления его вращения), то меняют направление тока в одной из его рабочих обмоток.
Методом смены полярности подключения клемм двигателя возможно поменять направление только тех моторов, которые включены по независимой схеме, либо движков с постоянным магнитом в качестве возбудителя. Во всех иных устройствах необходима смена направления тока в одной из рабочих обмоток.
Кроме того, движки постоянного тока нельзя включать методом подключения полного напряжения. Это связано с тем, что величина их пускового тока, примерно в 2 десятка раз выше номинального (это зависит от размеров и скорости двигателя). Токи пуска движков больших размеров могут и в полсотни раз превосходить их номинальный рабочий ток.
Токи больших величин способны вызвать эффект кругового искрения коллектора, в результате чего коллектор разрушается.
Чтобы выполнить включение ДПТ, используется методика плавного включения, либо применение пусковых реостатов. Включение прямого типа возможно лишь на небольших напряжениях и для маленьких движков, имеющих большое сопротивление якорной обмотки.
Пишите комментарии, дополнения к статье, может я что-то пропустил.
Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Всего доброго.
Короткая заметка:Без встраиваемых светодиодных потолочных светильников, вы не добьетесь оригинального светового дизайна на кухне. Перейдя по ссылке, вы сможете узнать, как просто, можно организовать интерьер света.
Источник
Последовательное, параллельное и смешанное возбуждение в двигателях постоянного тока
Электродвигатель постоянного тока работает от источников постоянного тока. В электродвигателе происходит превращение электрической энергии в механическую.
Электрический двигатель постоянного тока состоит из ротора (якоря) и статора (индуктора, магнита, обмотки возбуждения). Статор может быть либо постоянным магнитом, либо электромагнитом.
Якорь во многих электродвигателях представляет собой проволочные петли, надетые на сердечник из мягкого железа, на котором реверсируется питание его обмотки (посредством коммутатора или управляющей электронной схемы).
Большинство двигателей, работающих на постоянном токе, имеют коммутатор, состоящий из коллектора и щеток. Щетки установлены на статоре и не вращаются, а коллектор соединен с катушкой установленной на роторе (якоре).
Современные бесколлекторные двигатели (или бесщеточные двигатели, BLDC) имеют якорь из постоянных магнитов и не имеют коллектора и щеток, а работают со специальной электронной схемой.
Якорь двигателя двигателя постоянного тока имеет очень низкое сопротивление. По этой причине при запуске двигателя последовательно с ним включается переменное сопротивление, которое выводится по мере того, как якорь набирает скорость.
Когда проводник с током вносится в магнитное поле, на него начинает действовать сила, зависящая от трех факторов: от напряженности поля, от величины тока и от длины проводника.
Сила, приводящая во вращение якорь электродвигателя, зависит от тех же трех факторов. При этом эффективная длина обмотки приблизительно равна удвоенной длине якоря, умноженной на число витков.
Двигатель постоянного тока в разобранном виде
Электромагнит двигателя постоянного тока можно возбудить тремя различными способами, и в каждом из этих способов возбуждения двигатель работает по-разному.
Обмотка электромагнита и якорь могут быть соединены тремя способами: последовательно (сериесное возбуждение), параллельно (шунтовое возбуждение) и смешанно (компаунд-возбуждение).
В электродвигателе постоянного тока с последовательным возбуждением весь ток проходит как через якорь, так и через обмотку электромагнита.
Следовательно, вращающий момент, действующий на якорь, изменяется пропорционально квадрату тока, поскольку крутящее усилие зависит от тока в якоре и от напряженности магнитного поля, которая линейно меняется в зависимости от тока в обмотке электромагнита.
В результате, когда действие большой нагрузки замедляет вращение якоря двигателя с последовательным возбуждением, так что обратная э. д. с. становится малой, то через якорь и обмотку электромагнита идет сильный ток, создающий значительную силу для вращения якоря.
Двигатели постоянного тока с последовательным возбуждением используются в трамваях, электровозах, автомобильных стартерах и в других машинах, которые работают в условиях быстро прикладываемых значительных нагрузок.
Обычно такие двигатели соединяются с приводимыми в движение машинами с помощью шестереночных, а не ременных передач, поскольку если при работе двигателя нагрузка на него резко снижается, то двигатель разгоняется до опасной скорости (они не имеют ограничения скорости) . На холостом ходу двигатель может работать на высоких оборотах, когда существует риск механического разрыва ротора с возможным травмированием оператора.
Современные технологии с преобразователем частоты позволяют полностью и в равной степени заменить такие двигатели на трехфазные асинхронные двигатели, а в последних разработках — на трехфазные синхронные двигатели с постоянными магнитами на роторе.
Обладая такой же мощностью и такими же характеристиками крутящего момента, они меньше, легче и позволяют рекуперацию энергии, если это позволяют условия эксплуатации источника питания.
Схема подключения электродвигателя
В двигателя постоянного тока с параллельным возбуждением ток разветвляется, одна часть его идет через якорь, а другая — через обмотку электромагнита. При этом полный ток в обеих ветвях равен току, питающему двигатель.
В результате вращающий момент якоря пропорционален первой степени тока, тогда как в двигателях с последовательным возбуждением этот момент меняется как квадрат тока.
Когда якорь двигателя с параллельным возбуждением начинает вращаться медленнее при повышении нагрузки на двигатель, через якорь пойдет больший, а через обмотку электромагнита — меньший ток.
В результате вращающий момент останется неизменным. Поэтому двигатель в течение всего времени, пока к нему приложена нагрузка, будет работать на скорости, пониженной по сравнению с его холостым ходом.
Такое подключение двигателя позволяет независимо регулировать и определять ток в обмотке возбуждения статора и обмотке ротора (якорь). Это позволяет изменять скорость и крутящий момент двигателя.
Двигатели с параллельным возбуждением непригодны для больших нагрузок. По этой причине они находят применение в таких установках, где нагрузка постоянная и где требуется постоянная скорость вращения, например электрических вентиляторах, воздуходувках, жидкостных насосах и т. п.
Электродвигатели постоянного тока со смешанным возбуждением имеют две обмотки возбуждения (одну для параллельного включения, другую — для последовательного). Они не разгоняются при ослаблении нагрузки и вместе с тем пригодны для больших нагрузок. Почему это так, предоставляю объяснить читателю и поделиться своими идеями в комментарии к статье.
Двигатели этого типа применяются в подъемниках, штамповочных прессах и других машинах, где в начальный момент работы машины необходимы значительные усилия. Последовательное возбуждение во многих случаях выключается после набора двигателем определенной скорости.
Вопрос. Какого вида возбуждения двигатель постоянного тока показан на фотографии в статье?
Источник
ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
Двигатели постоянного тока широко востребованы в бытовой аппаратуре, для питания которой используется постоянное напряжение.
Существуют сложности с их запуском, которые возникают из-за того, что работа электрических машин основана на взаимодействии подвижного ротора с вращающимся электромагнитным (э/м) полем статора.
В случае постоянного напряжения питания формирование вращающегося магнитного поля невозможно без применения вспомогательных узлов и устройств, выбор которых определяет существующее разнообразие модификаций двигателей такого типа.
Разновидности двигателей постоянного тока.
Электрические машины этого типа различаются по способу получения вращающегося магнитного поля, зависящего от конструкции вспомогательного узла. В соответствие с этим все двигатели делятся на
- коллекторные;
- бесколлекторные;
- устройства с внешним возбуждением.
В первом случае для подачи питания на ламели ротора используются специальные графитовые щетки. Менять полярность подаваемого напряжения, создавая аналог вращающегося магнитного поля, удается за счет разорванной конструкции токоподающего узла (слева на рисунке).
В бесколлекторном двигателе вращающееся э/м поле формируется специальным коммутирующим узлом. Функцию последнего выполняют электронные схемы на полупроводниковых элементах, имеющие различное исполнение. Благодаря этому удается получить бесконтактное взаимодействие полей, без щеток и коллектора.
Типичный представитель такого электродвигателя – мотор-колесо, известное большинству любителей езды на малогабаритных транспортных средствах. Еще один распространенный способ запуска двигателя – включение в схему специальных обмоток возбуждения.
СПОСОБЫ ВОЗБУЖДЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
Под возбуждением электродвигателей постоянного тока (ПТ) понимается эффект создания в них ЭДС, обеспечивающей вращение ротора. Их рабочие характеристики зависят от того, каким образом включена обмотка возбуждения (ОВ) по отношению к цепи якоря.
Наиболее распространены следующие схемы подключения:
- с независимым возбуждением (две обмотки не связаны одна с другой, а ОВ питается от отдельного источника);
- с параллельным возбуждением или шунтируемого типа (в них ОВ включена параллельно якорной цепочке);
- с последовательным возбуждением (ОВ включается последовательно с якорной обмоткой).
В ряде случаев, связанных с особенностями эксплуатации двигателей постоянного тока, применяется комбинированная схема включения.
Иногда ее называют «смешанной» или «компаундной» (в ней последовательное подключение совмещается с параллельным). Рассмотрим каждый из перечисленных вариантов более подробно.
При этой схеме подключения обмотка возбуждения электрически не связана с катушкой якоря (рис.1). Для снижения тепловых потерь и создания необходимой величины ЭДС число витков в ней делается достаточно большим, что позволяет снизить ток возбуждения.
Регулировать ток в якоре можно посредством резистора Rдоб, включенного последовательно. Частоту вращения можно менять резистором Rрег. Возможность независимого управления параметрами двигателя относят к плюсам этой схемы.
Ее минус – необходимость использования дополнительного источника питания, что приводит к увеличению материальных издержек. Применение схемы с независимым возбуждением определяется особенностями конструкции управляемого электропривода.
Электрическая схема подключения с параллельным возбуждением в целом напоминает рассмотренную выше. Ее особенность – наличие электрической связи ОВ с якорной цепью (рис.2).
Эффективность работы двух рассмотренных схем практически одинакова. Преимущество этого способа включения в том, что в данной ситуации отпадает необходимость в дополнительном источнике питания. Ее минус – невозможность раздельной регулировки параметров электродвигателя.
Принцип работы электродвигателя с последовательным возбуждением.
Особенностью этой схемы является последовательное включение ОВ и якорной цепочки (рис.3). При таком варианте подключения ток якоря является одновременно и током возбуждения (Iя =Iв). Это вынуждает производителей оборудования наматывать ОВ проводом того же сечения, что и у якоря.
Недостаток этой схемы – в том, что скорость двигателя зависит от нагрузки на валу. При ее увеличении падение напряжения на обмотках и магнитный поток возрастают. А это приводит к сильному падению скорости вращения. При снижении нагрузки частота вращения двигателя резко возрастает и может достичь опасных значений (он может начать работать «вразнос»).
Данный вариант применяют в случаях, когда необходимо выдерживать большое пусковое усилие (момент). Или же когда двигателю предстоит работать в режиме кратковременных перегрузок. Схемы с последовательным запуском используются в тяговых двигателях (в метро, трамваях, электровозах и троллейбусах).
Принцип действия двигателя со смешанным возбуждением.
К каждому из полюсов системы со смешанным возбуждением подключено две обмотки: последовательная и параллельная (рис.4). Их допускается включать таким образом, чтобы магнитные потоки суммировались (согласное подключение), либо вычитались один из другого (встречное включение).
В зависимости от того, как соотносятся части каждого из магнитных потоков, двигатель постоянного тока со смешанным возбуждением приближаются по своим свойствам к одному из уже рассмотренных ранее вариантов.
Такие схемы применяются в ситуациях, когда необходим большой по величине пусковой момент и одновременно невозможно обойтись без регулировки частоты вращения вала при переменных нагрузках.
БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
Бесколлекторным называют двигатель, ток в статорных обмотках которого коммутируется особыми электронными устройствами («драйверами» или «инверторами»). Такой коммутатор состоит из набора полупроводниковых элементов, создающих вращающее поле путем подачи тока в соответствующую обмотку.
Скорость вращения вала у агрегатов этого типа значительно выше, чем у коллекторных с постоянными магнитами. Это позволяет увеличить удельную мощность двигателя и повысить его КПД.
Устройство и принцип действия.
Любой бесколлекторный двигатель состоит из следующих основных узлов:
- статор с обмотками;
- вращающийся ротор с постоянными магнитами;
- контроллер, обеспечивающий формирование в статоре вращающегося э/м поля.
На статоре бесколлекторного двигателя располагаются 3 обмотки, которые, как и у электродвигателей переменного тока называются фазными.
Допустимость такого названия объясняется следующим. Несмотря на того, что эти агрегаты работают от источника постоянного напряжения (аккумуляторов) – управляющий коммутацией обмоток контроллер включает ток поочередно.
Это приводит к формированию в них переменной составляющей в виде прямоугольных импульсов. Они и создают видимость трехфазного вращающегося э/м поля, характерного для коллекторных электродвигателей синхронного или асинхронного типа.
В зависимости от того, по какой схеме включаются обмотки статора («звезда» или «треугольник») система содержит соответственно четыре или три рабочих шины. Катушки наматываются в пазах между зубьями сердечника статора, распределяясь равномерно по фазам.
В статор нередко интегрируются датчики Холла, фиксирующие текущее положение ротора.
С их помощью удается передавать информацию контроллеру, который в каждый момент «знает», в какой точке находится ротор и подает питающий импульс на нужную обмотку. Такая возможность повышает эффективность функционирования двигателя с максимально возможной отдачей (мощностью).
© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
Источник