Способы восстановления распределительных валов

X Международная студенческая научная конференция Студенческий научный форум — 2018

ВИДЫ РЕМОНТА РАСПРЕДЕЛИТЕЛЬНЫХ ВАЛОВ

В процессе эксплуатации на распределительный вал с конструктивно заложенной малой жесткостью воздействуют вибрация, знакопеременные нагрузки, сила трения, среда. Вследствие чего возникают дефекты вала: износ кулачков, опорных шеек и увеличение прогиба.

При выборе способов восстановления распредвала и разработке технологического процесса главным образом необходимо учитывать перспективность способов, определяемая возможностями достижения высокой производительности, требуемого качества и низкой себестоимости.

Устранение увеличенного прогиба распределительного вала, характеризуемого биением

Биение определяется с помощью часового индикатора и устраняется правкой на холодную (без применения нагрева) посредством выдавливания прессом или рихтовкой. При этом учитывают материал вала (чугун или сталь), а также допуски на биение предоставленные заводом-изготовителем. Далее вал необходимо подвергнуть динамической балансировке на специальном оборудовании с целью предупреждения возврата детали к прежнему изгибу.

Допускаемое биение средних опорных шеек относительно крайних не более 0,05 мм для большинства двигателей. При этом предусмотрены некоторые исключения. Биение шейки под распределительную шестерню допускается не более 0,03 мм.

Технология восстановления кулачков распределительного вала

Распределительные валы работают в условиях знакопеременных нагрузок. Для их восстановления наиболее рационально в качестве наплавки или напыления применять порошковые твердые сплавы. Для большинства кулачков требуется наплавить только верхушку. Однако при значительных износах кулачки наплавляют по профилю и затем шлифуют под номинальный размер.

Наиболее универсальными и совершенными методами нанесения защитных покрытий являются наплавка и напыление плазменной дугой. Опорные шейки распредвала наращивают методом электро-дуговой металлизации с последующей обработкой. В этом случае необходимо расточить постель головки в чистовой размер. Шлифуют шейки распредвала на круглошлифовальных станках типа ЗБ151. После процедуры напыления распредвала твёрдость покрытия не уступает заводским параметрам.

В последнее время наиболее активно внедряют технологию плазменной наплавки проволочными и порошковыми материалами. В связи с широкой универсальностью использования различной гаммы выпускаемых присадочных порошков процесс плазменной наплавки порошковыми материалами наиболее эффективен.

В настоящее время среди методов порошковой плазменной наплавки наиболее активно используется метод порошковой плазменной наплавки, получивший название РТА — процесс (plasma transferred arc). При этом методе действуют одновременно основная дуга (горящая между электродом и изделием) и косвенная или пилотная дуга (горящая внутри плазмотрона между электродом и плазмообразующим соплом). В связи с тем, что процесс нанесения покрытий только косвенной плазменной дугой в России называется плазменным напылением, новая технология получила название плазменная наплавка-напыление.

Процесс плазменной наплавки-напыления (РТА — процесс) обеспечивает использование пилотной (косвенной) дуги для расплавления присадочного порошка и основной дуги (переносимой) для поддержания необходимой температуры частиц порошка осажденной на детали. При этом увеличение времени нахождения частиц порошка при высокой температуре способствует максимальному сцеплению и уплотнению частиц с минимальным перегревом поверхности детали. Оптимизация основных характеристик процесса (токов основной и пилотной дуги, расстояния до изделия, скорости подачи порошка и скорости перемещения плазмотрона) выявило минимальную чувствительность к скорости подачи порошка и в определенных пределах к скорости перемещения плазмотрона.

Плазменную наплавку металла можно реализовать двумя способами:

1. Струя газа захватывает и подает порошок на поверхность детали;

2. В плазменную струю вводится присадочный материал в виде проволоки, прутка, ленты.

В качестве плазмообразующих газов можно использовать аргон, гелий, азот, кислород, водород и воздух. Наилучшие результаты наплавки получаются с аргоном и гелием.

Технология восстановления опорных шеек распредвала

Для восстановления работоспособности элемента применяют различные способы. Выбор рационального способа восстановления деталей определяется по критериям применяемости, долговечности и технико-экономической эффективности.

Электроконтактные способы восстановления деталей по сравнению с другими, имеют ряд преимуществ на этапе восстановления шеек распределительного вала. Среди них – высокая производительность и низкая энергоемкость процесса, незначительная зона термического влияния, отсутствие мощного светового излучения и газовыделений, снижение потерь присадочного материала в результате разбрызгивания и выгорания легирующих элементов, сохранение первоначальных свойств материала детали при высокой прочности получаемого покрытия с основным металлом. Причем для получения покрытий ЭКП можно использовать однокомпонентные порошки, применяемые для других способов наплавки, используемые в порошковой металлургии; порошковые смеси, которые могут быть двух- или многокомпонентными и состоять из различных металлических и неметаллических порошков; спеченные из порошков ленты, стальные ленты и проволоки; комбинированные материалы.

Механическая обработка валов после восстановления

Точение закаленных сталей имеет ряд преимуществ по сравнению со шлифованием. При твердом точении в каждый момент времени участвует одна точка режущей кромки, что позволяет легко обрабатывать сложные контуры без применения дорогостоящих профильных кругов, используемых при шлифовании. К тому же, твердое точение дает возможность обрабатывать сложные поверхности за один установ.

В результате обеспечивается превосходная точность позиционирования, сокращается число установов заготовки и снижается риск поломки детали. Процесс твердого точения также более благоприятен для окружающей среды, так как на данной операции не образуются абразивная пыль, как при шлифовании, и не требуется применение СОЖ.

Читайте также:  План по ассортименту по способу наименьшего процента

В конечном счете, при твердом точении сокращаются затраты на обслуживание станка, упрощается управление технологическим процессом, а также обеспечиваются высокая производительность и качество обработки. Благодаря всем этим преимуществам переход к твердому точению значительно сокращает расходы на производство.

Рассмотренные методы восстановления распределительных валов позволяют устранить наиболее распространенные дефекты данного элемента. Качественное восстановление обеспечивает долговременную последующую эксплуатацию, и снимает необходимость приобретения новой детали.

Список литературы

1. Глазунов С.Н. Курс лекций: Технологические процессы реновации. – М: МГТУ им. Н.Э. Баумана, 2009.

2. Шиповалов А.Н. Технология восстановления кулачков распределительных валов плазменной наплавкой // Автореферат. –М: ФГОУ ВПО ГРАЗУ, 2010. – 17с.

3. Воловик Е.Л. Справочник по восстановлению деталей. – М: Колос, 1981. – 351 с.

4. Вощанов К.П. Ремонт оборудования сваркой. – М: Машиностроение, 1967. – 192 с.

Источник

Восстановление распределительных валов

Валы большинства двигателей изготавливают штамповкой из стали 40 и 45 или отливкой из специального чугуна (двигатель ЗИЛ-130).

Основные дефекты распределительного вала:

  • изгиб вала
  • износ и отколы кулачков и опорных шеек
  • износ шпоночной канавки и посадочного места под распределительную шестерню
  • износ или повреждение резьбы

Вал выбраковывают при трещинах, аварийном изгибе или скручивании, отломах металла на вершине кулачка более 3 мм его ширины.

Изгиб вала устраняют правкой в холодном состоянии на призмах под прессом. Допускаемое биение средних опорных шеек относительно крайних — не более 0,05 мм для большинства двигателей и не более 0,10 мм для двигателей А-41 и А-01М. Биение шейки под распределительную шестерню допускается не более 0,03 мм.

Опорные шейки распределительных валов шлифуют под уменьшенный ремонтный размер в центрах специального станка 3A433 или на круглошлифовальных станках электрокорундовыми кругами зернистостью 46-60 и твердостью СМ. Перед шлифованием зенкуют масляные отверстия, углубляют масляные каналы. В этом случае в блок цилиндров необходимо устанавливать втулки ремонтного размера.

При значительном износе опорных шеек их наплавляют в среде углекислого газа вибродутовой или плазменной наплавкой, наращивают железнением или газотермическим напылением. Перед наплавкой масляные каналы защищают графитными вставками, а перед железнением — свинцовыми. Наплавленные шейки шлифуют. При необходимости после грубого шлифования проводят закалку на глубину 2-3 мм.

Изношенную шейку под распределительную шестерню восстанавливают наплавкой в среде углекислого газа или железнением и обработкой под номинальный размер. Шпоночную канавку заплавляют электродом Э42 или в среде углекислого газа проволокой Св-18ХГСА и фрезеруют под номинальный размер. Смещение шпоночной канавки относительно диаметральной плоскости допускается не более 0,05 мм.

Изношенную шпоночную канавку можно восстановить фрезерованием под увеличенный размер шпонки. Ремонтную шпонку изготавливают из стали 45 и термически обрабатывают до твердости HRC3 40-50.

Изношенные кулачки шлифуют по копиру на станке 3A433 до выведения следов износа и восстановления профиля. После шлифования кулачка высота подъема клапана не изменяется. При износе кулачков по высоте больше допустимого значения их наплавляют ручной электродуговой сваркой электродом Т-590 или Т-630, автоматической наплавкой в среде углекислого газа порошковой проволокой при помощи специального копировального приспособления с охлаждением вала в процессе наплавки. При ручной электродуговой или газовой наплавке на боковые стороны кулачков устанавливают защитные экраны из меди или графита. Распределительный вал помещают в ванну с водой на подставки так, чтобы половина диаметра вала была в воде. После наплавки проверяют изгиб вала и при необходимости правят. Затем наплавленные кулачки предварительно обрабатывают абразивным кругом по шаблону, а после этого окончательно шлифуют на станке 3A433 по копиру.

Восстановленный распределительный вал должен иметь твердость поверхности кулачков и опорных шеек HRC3 54-62, шероховатость Ra 0,63-0,32 мкм.

Источник

Технология восстановления распределительных валов двигателей автомобилей

Анализ дефектов детали и требований, предъявляемых к отремонтированной детали. Выбор способов устранения дефектов. Разработка технологического процесса восстановления детали. Определение режимов обработки. Расчёт припусков, техническое нормирование.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 17.11.2012
Размер файла 140,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Технологический раздел

1.1 Описание назначения, устройства и условий работы детали

1.2 Анализ дефектов детали и требований, предъявляемых к отремонтированной детали

1.3 Определение годовой программы процесса восстановления детали

1.4 Анализ существующих методов восстановления. Параметры, определяющие выбор метода

1.5 Выбор способов устранения дефектов

1.5.1 Выбор способов устранения дефектов по признакам

1.5.2 Выбор способов устранения дефектов по физико-механическим свойствам

1.5.3 Выбор способа устроения дефектов по технико-экономическим характеристикам

1.6 Описание выбранного способа восстановления

1.7 Разработка технологического процесса восстановления детали

1.7.1 Анализ технологичности конструкции

1.7.2 Определение типа производства

1.7.3 Выбор технологических баз

1.7.4 Выбор варианта технологического маршрута восстановления детали

Читайте также:  Маска для лица альгинатная аравия способ применения

1.8 Выбор оборудования

1.9 Расчёт припусков

1.10 Определение режимов обработки

1.11 Техническое нормирование

Список использованной литературы

деталь восстановление дефект вал

Распределительный вал изготавливается из стали или специального чугуна, и подвергается термической обработке. Профиль его кулачков как впускных, так и выпускных у большинства двигателей делают одинаковыми.

Одноименные (впускные и выпускные) кулачки располагаются в четырехцилиндровом двигателе под углом в 90о в шестицилиндровом — под углом в 60о, а в восьмицилиндровом — под углом в 45о. При шлифовании кулачкам придают небольшую конусность. Взаимодействие сферической поверхности торца толкателей с конической поверхностью кулачков обеспечивает их поворот в процессе работы.

Начиная с передней опорной метки, диаметр шеек уменьшается, что облегчает установку распределительного вала в картере двигателя. Число опорных шеек обычно равно числу коренных подшипников коленчатого вала. Втулки опорных шеек изготавливают из стали, а внутреннюю поверхность их покрывают антифрикционным сплавом.

1. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

1.1 Описание назначения, устройства и условий работы детали

Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Он состоит из впускных и выпускных кулачков, опорных шеек. Профиль кулачка обеспечивает плавность хода клапана и влияет на шумность работы газораспределительного механизма. Распределительный вал автомобиля ВАЗ-2108 имеет 5 опорных шеек и 8 кулачков. Одноимённые кулачки (под впускные или выпускные клапаны) располагаются под углом 900 в четырёхцилиндровых двигателях.

В процессе работы на распределительный вал воздействуют силы трения, вибрация, знакопеременные нагрузки, среда и др. Всё это вызывает появление износов: нарушение качества поверхности шеек, механические повреждения.

1.2 Анализ дефектов детали и требований, предъявляемых к отремонтированной детали

У распределительного вала изнашиваются опорные шейки и кулачки. Возможен также изгиб вала. Изгиб опасен тем, что при вращении такого вала средняя опорная шейка даёт биения. У отремонтированной детали биений быть не должно. Опорные шейки коленчатого вала изнашиваются до недопустимого отклонения от цилиндричности, овальность и конусность более 0,1 мм. У отремонтированной детали овальность и конусность не должны превышать 0,04 мм. Кулачки распределительного вала изнашиваются неравномерно. Изнашивание кулачка зависит от направления вращения вала. Максимальный износ кулачок имеет с той стороны которая нажимает на толкатель клапана. Поэтому профиль изношенного кулачка значительно отличается от нового. Износ кулачка вызывает недопустимое уменьшение подъёма клапанов и смещение в сторону запаздывания момента начала и момента максимального открытия клапана. Профиль восстановленного кулачка не должен отличаться от профиля нового кулачка.

1.3 Определение годовой программы процесса восстановления детали

Годовая программа процесса восстановления детали определяется по формуле:

где — годовая программа изделий, шт.;

— количество деталей в изделии, шт.;

1.4 Анализ существующих методов восстановления. Параметры, определяющие выбор метода

В настоящее время существуют различные методы восстановления изношенных поверхностей деталей. Но все эти методы основаны на нанесении слоя определённого материала (покрытия) на поверхность детали. Любое из этих покрытий имеет своё назначение и диапазон применения в зависимости от свойств применяемого материала.

Электролитическим осаждением металлов, бестоковым осаждением металлов, химико-механическим осаждением металлов, анодным нанесением конверсионных покрытий, химическим нанесением конверсионных покрытий получают покрытия электролитического и химического нанесения.

Газопламенным напылением, электродуговым напылением, детонационным напылением, плазменным напылением получают покрытия термического напыления.

Вакуумным напылением, катодным напылением, ионным плакированием получают конденсационные покрытия. Горячим алюминированием, горячим цинкованием, горячим лужением, горячим свинцеванием получают покрытия, наносимые погружением в расплав.

К диффузионным покрытиям относят: цементованные слои, азотированные слои, азотонауглероженные слои, борированные слои, силицированные слои, алюминиевые покрытия, хромовые покрытия, цинковые покрытия.

Исходя из данных приведённых таблиц для восстановления изношенных шеек и кулачков распредвала, подходят следующие покрытия: легированная сталь, никель — алюминиевый сплав, никель — хромовый сплавы, хромовое, кобальтовое, дисперсионное кобальтовое, никелевое, бестоковое никелевое, бестоковое дисперсное никелевое.

Эти покрытия получают методами термического напыления и электролитического, химического нанесения. А методами погружения в расплав, диффузионных покрытий, физического осаждения из парогазовой фазы получают покрытия, предназначенные для упрочнения поверхности, защиты от износа, защиты от коррозии, снижения трения.

При восстановлении распределительного вала необходимо учитывать условия его работы и то, что он является ответственной деталью газораспределительного механизма. Поэтому применяемое для ремонта покрытие должно обладать достаточной твердостью, высокой прочностью сцепления, антифрикционностью, Низкую склонность к трещинообразованию. Анализ свойств подходящих по назначению покрытий показал, что наиболее подходящим покрытием, для восстановления распределительного вала, является твердосплавное покрытие.

Такое покрытие получают методами термического напыления. Существует большое число способов напыления: напыление (металлизация) из жидкой ванны, газопламенное напыление, электродуговое напыление, детонационное напыление (металлизация взры-вом), плазменное напыление (в защитном газе или в ваку-уме), индукционное напыление и напыление в конденсатор-ном разряде, рассматриваются только четыре наиболее важ-ных способа получения покрытий термического напыления.

Любой из этих методов можно использовать для восстановления распредвала, но наиболее подходящим является метод газопламенного напыления.

1.5 Выбор способов устранения дефектов

1.5.1 Выбор способов устранения дефектов по признакам

По конструкторско-технологическим признакам дефекты распределительного вала могут быть устранены несколькими способами: наплавкой изношенного слоя опорных шеек и кулачков, причём возможно применение различных способов наплавки, наплавка в среде защитных газов, вибродуговая наплавка, наплавка под слоем флюса, электродуговая наплавка.

Читайте также:  Проверенные рецепты мыла с нуля холодным способом

Ещё можно применить такой метод восстановления, как напыление: газопламенное напыление, газоплазменное напыление, детонационное напыление, причём напылять можно металл любой твёрдости и износостойкости.

Применимы и методы гальванического восстановления изношенного слоя поверхности распределительного вала.

Возможно восстановление с помощью различных методов хромирования: белое хромирование, серое хромирование, пористое хромирование.

1.5.2 Выбор способов устранения дефектов по физико-механическим свойствам

Физико-механические свойства, получаемые при различных способах восстановления деталей, оцениваются коэффициентом долговечности, определяемым по формуле:

где — соответственно коэффициенты: износостойкости, выносливости, сцепления и коэффициент, учитывающий прочие физико-механические свойства.

Для ручной электродуговой сварки:

Для ручной газовой сварки:

Для ручной аргонодуговой сварки:

Для механизированной наплавки в среде углекислого газа:

Для механизированной наплавки под слоем флюса:

Для механизированной наплавки вибродуговой:

Для электролитического покрытия в среде пара:

Для электролитического покрытия- хромирования:

Для электролитического покрытия — осталивания:

Для клеевой композиции коэффициент долговечности не рассчитывается, он слишком невелик.

Для электромеханического высаживания:

Для пластической деформации:

Для обработки под ремонтный размер:

Для постановки дополнительных деталей:

Таким образом, получаем, что самая высокая долговечность обеспечивается методом хромирования, но в данных расчётах не был учтён такой метод восстановления, как метод напыления.

Коэффициент долговечности газопламенного напыления меняется в зависимости от того, какой материал используется.

С помощью газопламенного напыления можно создать восстановленную поверхность из любого металла, который подходит по своим физико-механическим свойствам. Поэтому целесообразно применять для восстановления изношенной поверхности метод газопламенного напыления.

1.5.3 Выбор способа устроения дефектов по технико-экономическим характеристикам

Технико-экономические характеристики способа устранения дефектов оцениваются коэффициентом, влияющим на соответствующие характеристики, который находится по формуле.

где: — соответственно стоимость восстановления и коэффициент долговечности.

Для ручной электродуговой сварки:

Для ручной газовой сварки:

Для ручной аргонодуговой сварки:

Для механизированной наплавки в среде углекислого газа:

Для механизированной наплавки под слоем флюса:

Для механизированной наплавки вибродуговой:

Для электролитического покрытия в среде пара:

Для электролитического покрытия- хромирования:

Для электролитического покрытия — осталивания:

Для клеевой композиции коэффициент долговечности не рассчитывается, он слишком невелик.

Для электромеханического высаживания:

Для пластической деформации:

Для обработки под ремонтный размер:

Для постановки дополнительных деталей:

Таким образом, получаем, что по технико-экономическим свойствам, для восстановления лучше всего применять метод электромеханического высаживания.

1.6 Описание выбранного способа восстановления

Для восстановления опорных шеек и кулачков распредвала я выбрал метод газопламенного напыления. Этот метод позволяет сравнительно дёшево получить восстановленную поверхность, отвечающую всем технологическим требованиям. С помощью установки «техникорд топ-жет/2», для газопламенного напыления, на восстанавливаемую поверхность наносится расплавленный металл в виде мелких капелек. Капельки металла при попадании на напыляемую поверхность проникают во все микронеровности, тем самым обеспечивают хорошую сцепляемость поверхностей. В процессе напыления образуется чешуйчатая поверхность.

1.7 Разработка технологического процесса восстановления детали

1.7.1 Анализ технологичности конструкции

Деталь — распределительный вал (рис 1.1)- представляет собой вал, на котором располагаются кулачки. Кулачки и опорные шейки распределительного вала после изготовления проходят термическую обработку- закалку токами высокой частоты, Поэтому обрабатываемая поверхность имеет высокую твёрдость.

С точки зрения механической обработки деталь имеет недостатки: её нельзя обрабатывать проходным резцом, из-за твёрдости поверхности вала, его обрабатывать можно только шлифованием, другими способами обработки невозможно добиться нужной точности и качества обработанной поверхности. Кулачки распределительного вала обрабатываются на копировально-шлифовальном станке.

В остальном деталь достаточно технологична, допускает применение высокопроизводительных режимов обработки, Имеет хорошие базовые поверхности для первоначальных операций.

Рисунок 1.1 — Вал распределительный.

1.7.2 Определение типа производства

Тип производства характеризуется коэффициентом закрепления операции , который показывает отношение всех различных технологических операций, выполняемых в течении месяца, к числу рабочих:

где — суммарное число различных операций;

— явочное число рабочих.

Определим количество станков по формуле:

где:N- годовая программа, шт.;

— штучное время, мин.;

— действительный годовой фонд времени, ч.;

— нормативный коэффициент загрузки оборудования.

для чернового шлифования определяем по формуле:

где d- диаметр обрабатываемой детали,

— длина обрабатываемой детали.

для чистового шлифования:

Тип производства характеризуется коэффициентом закрепления операции , который показывает отношение всех различных технологических операций, выполняемых в течении месяца, к числу рабочих:

где — суммарное число различных операций;

— явочное число рабочих.

Определим количество станков по формуле:

где N — годовая программа N = 2500 шт;

— штучное или штучно-калькуляционное время;

— действующий годовой фонд времени, час; =4029 ч.

— нормальный коэффициент загрузки оборудования; [1, с 20].

Количество операций, выполняемых на рабочем месте определяем:

где — фактический коэффициент загрузки рабочего места;

Коэффициент загрузки определяется по формуле:

Для каждой операции находим значение , , Р, , О и запишем их в таблицу 1

для чернового шлифования определяем по формуле:

где d- диаметр обрабатываемой детали,

— длина обрабатываемой детали.

для чистового шлифования:

Принимаем P = 1 — принятое число рабочих мест

Подобным образом производим расчет: шлифование коренных шеек под наплавку, наплавка коренных шеек, предварительное шлифование коренных шеек, окончательное шлифование коренных шеек, полирование шеек.

Таблица № 1.1 — Данные по технологическому процессу.

Источник

Оцените статью
Разные способы