Способы подключения потребителей электрической энергии
С самых первых шагов внедрения электрической энергии в жизнь и быт людей и различное производство тогдашние инженеры и разработчики много внимания уделяли способам подключения потребителей электрической энергии.
В результате проведенных многих исследований были выявлены 3 основных способа подключения электрических приборов и устройств к источникам электрической энергии – последовательный способ, параллельный и комбинированный или смешанный способ. При этом каждый способ обладает своими принципиальными особенностями. С давних пор известно, что каждое электрическое устройство или прибор обладает определенной мощностью и определенным сопротивлением, а также на какое номинальное напряжение они рассчитаны, от которого зависит и величина потребления тока.
Последовательное соединение выполняется путем подключения приборов один за другим, когда второй вывод первого приемника электроэнергии соединяется с первым выводом второго приемника, а второй его вывод соединяется с первым выводом третьего приемника и т.д. Далее первый вывод первого потребителя и второй вывод последнего потребителя подключается к источнику питания. Основная особенность последовательного соединения электрической цепи заключается в том, что величина тока во всей цепи будет постоянной, а напряжение после каждого потребителя будет снижаться на величину его падения, а сумма падения напряжения после всех потребителей будет равна величине общего номинального напряжения.
Эта особенность последовательного соединения широко используется при устройстве различных электрических сетей, особенно при соединении аналогичных потребителей электрической энергии. К примеру чтобы подключить к источнику энергии напряжением 220 В электрические устройства (ламп и других) напряжением каждого в 10 В потребуется 22 устройства. Такое свойство последовательного соединения можно использовать при необходимости подключения в бытовую и иную сеть любого электрического устройства меньшего напряжения необходимо включить в цепь резистор (сопротивление) с определенной величиной сопротивления. И еще необходимо иметь ввиду, что при выходе из строя любого потребителя при последовательном соединении, цепь будет полностью обесточена.
В то же время наиболее распространенным способом электрического соединения как в быту, так и на производстве является параллельное соединение, которое заключается в том, что электрические устройства, приборы, бытовая и иная техника подключается через определенные электроустановочные соединения к магистральной сети. При параллельном соединении величина напряжения перед каждым устройством остается постоянным, равным напряжению источника питания. При этом величина тока при каждом потребители будет равна в соответствии с известным законом Ома частному от деления величины напряжения (220В) на величину электрического сопротивления. Суммарная величина электрического тока в сети будет равна сумме величин токов, проходящих по каждому потребителю. Этот способ соединения позволяет подключать разнообразные приборы и технику – группы освещения, холодильники, телевизоры, пылесосы и т.д. В отличие от последовательного соединения, выход из строя отдельного потребителя не влияет на работу других приборов и техники.
При смешанном комбинированном соединении потребителей электрической энергии заключается в том, что группы потребителей подключаются по параллельном соединении, а внутри группы потребители могут быть соединены последовательно.
Источник
Способы соединения потребителей электроэнергии.
Последовательное соединение
При последовательном соединении во всей цепи (и в источнике в том числе) ток одинаковый:
Iобщ = I1 = I2 = I3 = Iист;
Общее сопротивление цепи складывается из сопротивлений каждого потребителя:
Общее напряжение складывается из падений напряжений на каждом потребителе:
Ø При подключении потребителей последовательно общее сопротивление цепи увеличится, а общий ток уменьшится (Iобщ = Uобщ/Rобщ);
Ø При последовательном соединении, наибольшее падение напряжения и выделение тепловой энергии будет на потребителе наименьшей мощности, т.е. с наибольшем сопротивлением.
Прим. Так как подключение или отключение потребителей при последовательном соединении будет влиять на работу остальных потребителей, такое соединение применяется редко (гирлянда, тяговые двигатели на некоторых локомотивах) – для уменьшения напряжения на каждом потребителе.
Параллельное соединение
При параллельном соединении каждый потребитель подключается на одинаковое напряжение (часто говорят, что напряжение подается на потребитель):
Uобщ = U1 = U2 = U3;
Общий ток в цепи складывается из токов через каждый потребитель:
Iобщ= I1 + I2 + I3; (по 1-му закону Кирхгофа)
В такой схеме складываются не сопротивления потребителей, а их проводимости:
Ø общее сопротивление цепи при параллельном соединении будет всегда меньше самого наименьшего сопротивления любой из ветви;
Ø при увеличении числа потребителей включенных параллельно, общее сопротивление цепи уменьшается, а общий потребляемый ток увеличивается(увеличивается нагрузка цепи);
Ø больший ток пойдет по цепи с меньшим сопротивлением;
Ø если при параллельном соединении сопротивление потребителей одинаково, то общее сопротивление Rобщ можно определять по формуле:
R — сопротивление одного потребителя
Rобщ= —-
N — количество потребителей
3. Смешанное соединение (мостовая схема)
Частным случаем смешанного соединения является мостовая схема.
Мостовая схема имеет четыре плеча A – C – B – D, каждое плечо моста включает в себя потребитель (на данной схеме – резисторы, но могут быть электродвигатели). Так же мост имеет две диагонали
А – С — питающая диагональ
В – D — измерительная диагональ.
При одинаковых параметрах потребителей (R1 = R2 = R3 =R4или, в схеме с двигателями – если они работают в одном режиме)падение напряжений на плечах моста будет равным, и потенциалы точек ВиD будут равны (φв = φD ). Тогда напряжение на гальванометре равно нулю, т.е. ток через измерительную диагональ не идет. Такой мост называется уравновешенным.
Равновесие моста имеет место не только при равенстве параметров всех потребителей, но и при условии R1 /R4= R2 /R3.При изменении сопротивления любого плеча (один из двигателей выходит из общего режима работы) равновесие моста нарушается, на измерительной диагонали появляется напряжение и ток. Поэтому такая схема используется, в частности, для срабатывания реле боксования в электровозах, тепловозах, секциях электропоездов.
Источник
Методы передачи электроэнергии на расстояние
Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.
Способы передачи электроэнергии
Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.
Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:
Принцип работы и объяснение схемы:
- В начале схемы находится генератор, вырабатывающий электричество.
- От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
- После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
- От трансформатора напряжение подается потребителю, с существенным занижением.
Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.
Воздушные и кабельные линии
Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.
Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:
- большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
- потеря значительной доли мощности с каждым километром;
- требование подачи большой мощности в начале (от электростанции);
- вред магнитного поля для человека;
- большая вероятность повреждения и разрушения от природных катаклизмов;
- большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.
Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:
- Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
- Линии с напряжением от 1 до 35 кВ считаются средними.
- Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
- К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
- К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.
Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.
Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:
- Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
- Также идет потеря доли напряжения с расстоянием.
- Существует опасность механического повреждения или растяжения кабеля.
- Есть опасность шагового напряжения при повреждении, особенно в воде.
- Очень тяжело найти и устранить повреждение.
На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:
- Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
- Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.
Подобные схемы также делятся на категории.
Схемы в визуальном отображении:
Разомкнутая схема бывает 3 видов:
- Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
- Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
- Схема магистральной подачи, при которой между двумя источниками находится один потребитель.
Замкнутая схема также бывает 3 видов:
- Кольцевая схема с одним источником и потребителем.
- Магистральная схема с наличием резервного источника.
- Сложная замкнутая схема, для подключения потребителей особого назначения.
Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.
Постоянный ток
Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:
- С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
- Статическая устойчивость не оказывает влияния на передачу и распределение.
- Не требуется настраивать частотную синхронизацию.
- Напряжение можно передать всего по одной линии с одним контактным проводом.
- Нет влияния электромагнитного излучения.
- Минимальная реактивная мощность.
Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.
Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.
Беспроводная передача
Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.
Катушки
Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:
- нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
- невозможно передать электричество на большое расстояние;
- коэффициент полезного действия (КПД) подобного способа — всего 40 %.
На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.
Лазер
Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.
Микроволновая передача
Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.
В 60-х годах прошлого века, американцы изобрели ректенну. Иными словами, приемник микроволн. С помощью изобретения удалось передать 30 кВт электрического тока на расстояние в 1.5 км. При этом коэффициент потерь составил всего 18 %. На большее установка была не способна по причине использования полупроводниковых деталей в устройстве приемника. Для приема и передачи большей мощности энергии, при использовании ректенны, пришлось бы создать огромную принимающую панель. Это бы увеличило затрачиваемую энергию, частоту и длину волн, а значит и процент сопутствующей потери. Высокое излучение могло бы убить все живое в радиусе нескольких десятков метров.
В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.
Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.
Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.
На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.
Видео по теме
Источник