Способы увеличения силы давления

Способы увеличения силы давления

Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту

  • Главная
  • 7-Класс
  • Физика
  • Видеоурок «Давление. Способы уменьшения и увеличения давления»

Для введения понятия «давление» поставим простой опыт: с одинаковой по модулю силой надавим на бумагу острым концом карандаша и тупым концом. Почему результат разный? Мы можем сделать вывод, что при равных силах результат действия зависит от площади опоры.

Физическая величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется ДАВЛЕНИЕМ

Давление обозначается латинской строчной буквой «p». Зная обозначение силы (F) и площади (S), можем

Итак, чтобы определить давление тела, нужно модуль силы, действующей перпендикулярно к опоре, разделить на площадь поверхности опоры.

По определению видно, что давление скалярная величина, так как модуль силы и площадь являются скалярными величинами.

Установим единицу измерения давления. Сила измеряется в ньютонах, площадь поверхности –

Единица давления названа в честь французского ученого Блеза Паскаля.

За единицу давления принято давление, производимое силой в 1 Н на поверхность площадью 1 м2 перпендикулярно этой поверхности.

Давление может быть выражено в кратных единицах:

1 килопаскаль = 1 кПа = 1000 Па

1 мегапаскаль = 1 МПа = 1 000 000 Па

1 миллипаскаль = 1 мПа = 0,001 Па

Рассчитаем, какое давление на землю оказывает мальчик массой 40 кг. Мальчик своим весом давит на опору (пол), значит, сила давления равна весу:

F = P = mg = 40 кг ⋅ 10 Н/кг = 400 Н.

Мальчик опирается подошвами обуви на поверхность площадью примерно

500 см2 = 0,05 м2.

Изменится ли давление этого же мальчика, если он встанет на одну ногу? Площадь опоры уменьшится в 2 раза, значит, давление увеличится в 2 раза. Если он встанет на лыжи? Если будет кататься на коньках? Вес мальчика не изменится, то есть его сила давления останется прежней, но меняется площадь опоры и давление тоже будет другим.

Сделаем вывод: давление тела на опору зависит от приложенной силы и площади опоры.

Можно ли изменить давление тела на опору? Да, для этого нужно изменить или приложенную силу, или площадь соприкосновения тел, или и то, и другое. Человек изобрел множество способов увеличения или уменьшения давления, не меняя при этом приложенную силу. Значительно уменьшая площадь соприкосновения тел при неизменной силе, можно в десятки и сотни раз повысить давление. И наоборот, увеличив площадь опоры, мы уменьшим давление на поверхность или тело.

Приведем примеры увеличения и уменьшения давления.

Грузовые автомобили намного тяжелее легковых, поэтому их шины делают широкими. Танки, гусеничные тракторы могут проехать по любой местности, потому что опираются на широкие гусеницы, что значительно уменьшает давление на землю. То же самое можно сказать о шасси самолетов.

Если же нужно увеличить давление, не прилагая при этом больших усилий, уменьшают площадь соприкосновения тел. Например, ножи, пилы, резцы и другие инструменты остро затачивают. Заточенной лопатой копать грядки легче, чем тупой, острой иглой шить легче, чем тупой. Режущие и колющие приспособления встречаются и в живой природе: это когти, клыки, клювы, шипы и другие. Все они остро отточены, очень твердые и служат для добывания пищи или защиты.

Давление – скалярная физическая величина, равная отношению силы, действующей перпендикулярно поверхности, к площади поверхности. Давление вычисляется по формуле силы и площади поверхности. Способы изменения давления: изменить приложенную силу, изменить площадь соприкосновения тел. Основной способ уменьшения давления – увеличение площади поверхности опоры. Для увеличения давления при неизменной приложенной силе нужно уменьшить площадь опоры.

Источник

Способы уменьшения и увеличения давления. Физика. 7 класс. Разработка урока

Дидактическая цель: создать условия для осознания и осмысления новой учебной информации и способов её получения средствами проблемно-исследовательского метода, практико-ориентированного обучения.

Тип учебного занятия: усвоения новых знаний.

Метод обучения: проблемный, частично-поисковый, исследовательский с применением ИК технологии.

Формы организации учебно-познавательной деятельности учащихся: фронтальная, индивидуальная, коллективная.

Цели урока:

  • формировать умение находить давление в разных случаях;
  • сравнивать давление в разных практических ситуациях;
  • обосновывать необходимость увеличения или уменьшения давления.
  • развитие познавательной активности учащихся, их критического мышления, умения самостоятельно формулировать выводы,
  • расширение кругозора учащихся,
  • развитие речи,
  • закрепление умения правильно оформлять и решать задачи,
  • умение выдвигать гипотезу и обосновывать логику доказательства своего предположения.
  • воспитание чувства взаимопонимания и взаимопомощи при решении задач и выполнении экспериментального задания;
  • воспитание ответственного отношения к учебе, трудолюбия.

Задачи урока

  • Научить решать расчётные задачи по формулам p = F/S , F = pS, S = F/p и качественные задачи;
  • Уметь пользоваться формулами;
  • Отрабатывать навыки перевода значения давления, силы, площади из дополнительных единиц измерения в СИ;
  • Отрабатывать практические навыки в работе с физическим оборудованием;
  • Проанализировать реальные ситуации способов уменьшения и увеличения давления на опору
  • Уметь, используя жизненный опыт, обосновывать необходимость увеличения или уменьшения давления. Найти практическое применение уменьшению и увеличению давления.
Читайте также:  Верный способ объявления массива

Формируемые умения: работать с приборами, наблюдать, анализировать и сравнивать результаты опытов, делать выводы.

Предполагаемый результат: учащиеся должны знать способы изменения давления и уметь приводить примеры увеличения и уменьшения давления в технике и природе.

Место урока в учебном плане. Тема “Способы уменьшения и увеличения давления” рассматривается в разделе “Давление твердых тел, жидкостей и газов”. Эта тема в разделе вторая после «Давление. Единицы давления» и является наиболее интересной для учащихся, т.к. прослеживается тесная связь изучаемого материала с жизнью и техникой. Основное содержание изучаемого материала задают учебная программа и обязательный минимум содержания образования по физике.

Оборудование: деревянные бруски, динамометры, линейки, компьютер, проектор, экран, презентация с фотографиями, тесты для контроля знаний в 4-х вариантах.

План урока.

I. Организационный момент.

II. Мотивация, актуализация, целеполагание.

III. Изучение нового материала (первичное усвоение материала).

IV. Осознание и осмысление учебного материала.

V. Первичное закрепление учебного материала. Тест.

VI. Подведение итогов.

VII. Домашнее задание

Ход урока

Эпиграф к уроку:

Незнающие пусть научатся, а знающие вспомнят еще раз. (Античный афоризм)

I. Организационный момент

II. Мотивация. Актуализация. Целеполагание

Как помочь человеку, провалившемуся под лёд? Почему боксёры ведут бой в перчатках? Как правильно уложить вещи в рюкзаке, собираясь в турпоход? (Показать боксёрские перчатки, напёрсток, рюкзак). Сегодня мы с вами научимся находить ответы на эти и многие другие вопросы.

На предыдущем занятии мы с вами изучали теорию на тему давление твёрдых тел. Настало время теорию применить на практике. Запишите тему урока. “Способы уменьшения и увеличения давления”. Сформулируем цели (постараться самим):

  • научиться решать задачи по теме “Давление твёрдых тел”;
  • рассмотреть и выяснить способы изменения давления в быту, технике, природе.

Обратите внимание, ребята, на эпиграф к нашему уроку: Незнающие пусть научатся, а знающие вспомнят еще раз. Вот и мы сначала повторим основные понятия прошлой темы.

Фронтальный опрос (актуализация)

  1. Что называется давлением (с места отвечает ученик)?
  2. Написать формулу для определения давления и сделать ее анализ (назвать физические величины, входящие в формулу, их единицы; вывести формулы для физических величин, стоящих справа от знака равенства). (У доски работает ученик по желанию.)

III. Изучение нового материала

Сейчас ребята, у которых на столах располагается оборудование (деревянные бруски, динамометры и карточки с заданием), выполнят экспериментальное задание согласно указаниям в карточке.

Учащиеся используют карточки с указаниями к выполнению задания, деревянные бруски, динамометры и линейки, лежащие на столах.

Экспериментальное задание

Определить давление деревянного бруска на стол.

Порядок выполнения работы.

  1. Измерьте вес бруска с помощью динамометра.
  2. Измерьте длину, ширину и высоту бруска.
  3. Используя все полученные данные, вычислите площади наибольшей и наименьшей граней бруска. Примечание: 1 см 2 = 0,0001 м 2 .
  4. Рассчитайте давление, которое производит брусок на стол наименьшей и наибольшей гранями.
  5. Результаты запишите в тетрадь.
  6. На основе полученных результатов сформулируйте вывод.

Остальным учащимся предлагается устная работа с таблицей (заранее приготовлена на доске), заполним пустые ячейки (в таблице они отмечены красным цветом). (Фронтальная работа на применение написанных на доске формул, заполняет таблицу учитель).

Источник

Физика (7 класс)/Давление

Содержание

Давление. Единицы давления.

По рыхлому снегу человек идёт с большим трудом, глубоко проваливаясь при каждом шаге. Но, надев лыжи, он может идти, почти не проваливаясь в него. Почему? На лыжах или без лыж человек действует на снег с одной и той же силой, равной своему весу. Однако действие этой силы в обоих случаях различно, потому что различна площадь поверхности, на которую давит человек, с лыжами и без лыж. Площадь поверхности лыж почти в 20 раз больше площади подошвы. Поэтому, стоя на лыжах, человек действует на каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз меньшей, чем стоя на снегу без лыж.

Ученик, прикалывая кнопками газету к доске, действует на каждую кнопку с одинаковой силой. Однако кнопка, имеющая более острый конец, легче входит в дерево.

Значит, результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, к которой она приложена (перпендикулярно которой она действует).

Этот вывод подтверждают физические опыты.

По углам небольшой доски надо вбить гвозди. Сначала гвозди, вбитые в доску, установим на песке остриями вверх и положим на доску гирю. В этом случае шляпки гвоздей лишь незначительно вдавливаются в песок. Затем доску перевернем и поставим гвозди на острие. В этом случае площадь опоры меньше, и под действием той же силы гвозди значительно углубляются в песок.

От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия этой силы.

В рассмотренных примерах силы действовали перпендикулярно поверхности тела. Вес человека был перпендикулярен поверхности снега; сила, действовавшая на кнопку, перпендикулярна поверхности доски.

Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением.

Чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности:

давление = сила / площадь.

Обозначим величины, входящие в это выражение: давление — p, сила, действующая на поверхность, — F и площадь поверхности — S.

Читайте также:  Логические задачи 6 класс информатика табличный способ

Тогда получим формулу:

Понятно, что бóльшая по значению сила, действующую на ту же площадь, будет производить большее давление.

За единицу давления принимается такое давление, которое производит сила в 1 Н, действующая на поверхность площадью 1 м 2 перпендикулярно этой поверхности.

Единица давления — ньютон на квадратный метр ( 1 Н / м 2 ). В честь французского ученого Блеза Паскаля она называется паскалем (Па). Таким образом,

Используется также другие единицы давления: гектопаскаль (гПа) и килопаскаль (кПа).

Пример. Рассчитать давление, производимое на пол мальчиком, масса которого 45 кг, а площадь подошв его ботинок, соприкасающихся с полом, равна 300 см 2 .

Запишем условие задачи и решим её.

Дано: m = 45 кг, S = 300 см 2 ; p = ?

В единицах СИ: S = 0,03 м 2

P = 9,8 Н · 45 кг ≈ 450 Н,

p = 450/0,03 Н / м 2 = 15000 Па = 15 кПа

‘Ответ’: p = 15000 Па = 15 кПа

Способы уменьшения и увеличения давления.

Тяжелый гусеничный трактор производит на почву давление равное 40 — 50 кПа, т. е. всего в 2 — 3 раза больше, чем давление мальчика массой 45 кг. Это объясняется тем, что вес трактора распределяется на бóльшую площадь за счёт гусеничной передачи. А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору.

В зависимости от того, нужно ли получить малое или большое давление, площадь опоры увеличивается или уменьшается. Например, для того, чтобы грунт мог выдержать давление возводимого здания, увеличивают площадь нижней части фундамента.

Шины грузовых автомобилей и шасси самолетов делают значительно шире, чем легковых. Особенно широкими делают шины у автомобилей, предназначенных для передвижения в пустынях.

Тяжелые машины, как трактор, танк или болотоход, имея большую опорную площадь гусениц, проходят по болотистой местности, по которой не пройдет человек.

С другой стороны, при малой площади поверхности можно небольшой силой произвести большое давление. Например, вдавливая кнопку в доску, мы действуем на нее с силой около 50 Н. Так как площадь острия кнопки примерно 1 мм 2 , то давление, производимое ею, равно:

p = 50 Н/ 0, 000 001 м 2 = 50 000 000 Па = 50 000 кПа.

Для сравнения, это давление в 1000 раз больше давления, производимого гусеничным трактором на почву. Можно найти еще много таких примеров.

Лезвие режущих и острие колющих инструментов (ножей, ножниц, резцов, пил, игл и др.) специально остро оттачивается. Заточенный край острого лезвия имеет маленькую площадь, поэтому при помощи даже малой силы создается большое давление, и таким инструментом легко работать.

Режущие и колющие приспособления встречаются и в живой природе: это зубы, когти, клювы, шипы и др. — все они из твердого материала, гладкие и очень острые.

Давление

Мы уже знаем, что газы, в отличие от твердых тел и жидкостей, заполняют весь сосуд, в котором находятся. Например, стальной баллон для хранения газов, камера автомобильной шины или волейбольный мяч. При этом газ оказывает давление на стенки, дно и крышку баллона, камеры или любого другого тела, в котором он находится. Давление газа обусловлено иными причинами, чем давление твердого тела на опору.

Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, — оно и создает давление газа.

Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.

Рассмотрим следующий опыт. Под колокол воздушного насоса поместим резиновый шарик. Он содержит небольшое количество воздуха и имеет неправильную форму. Затем насосом откачиваем воздух из-под колокола. Оболочка шарика, вокруг которой воздух становится все более разреженным, постепенно раздувается и принимает форму правильного шара.

Как объяснить этот опыт?

В нашем опыте движущиеся молекулы газа непрерывно ударяют о стенки шарика внутри и снаружи. При откачивании воздуха число молекул в колоколе вокруг оболочки шарика уменьшается. Но внутри шарика их число не изменяется. Поэтому число ударов молекул о внешние стенки оболочки становится меньше, чем число ударов о внутренние стенки. Шарик раздувается до тех пор, пока сила упругости его резиновой оболочки не станет равной силе давления газа. Оболочка шарика принимает форму шара. Это показывает, что газ давит на ее стенки по всем направлениям одинаково. Иначе говоря, число ударов молекул, приходящихся на каждый квадратный сантиметр площади поверхности, по всем направлениям одинаково. Одинаковое давление по всем направлениям характерно для газа и является следствием беспорядочного движения огромного числа молекул.

Попытаемся уменьшить объем газа, но так, чтобы масса его осталась неизменной. Это значит, что в каждом кубическом сантиметре газа молекул станет больше, плотность газа увеличится. Тогда число ударов молекул о стенки увеличится, т. е. возрастет давление газа. Это можно подтвердить опытом.

Читайте также:  Способы механизации производственных процессов

На рисунке а изображена стеклянная трубка, один конец которой закрыт тонкой резиновой пленкой. В трубку вставлен поршень. При вдвигании поршня объем воздуха в трубке уменьшается, т. е. газ сжимается. Резиновая пленка при этом выгибается наружу, указывая на то, что давление воздуха в трубке увеличилось.

Наоборот, при увеличении объема этой же массы газа, число молекул в каждом кубическом сантиметре уменьшается. От этого уменьшится число ударов о стенки сосуда — давление газа станет меньше. Действительно, при вытягивании поршня из трубки объем воздуха увеличивается, пленка прогибается внутрь сосуда. Это указывает на уменьшение давления воздуха в трубке. Такие же явления наблюдались бы, если бы вместо воздуха в трубке находился бы любой другой газ.

Итак, при уменьшении объема газа его давление увеличивается, а при увеличении объема давление уменьшается при условии, что масса и температура газа остаются неизменными.

А как изменится давление газа, если нагреть его при постоянном объеме? Известно, что скорость движения молекул газа при нагревании увеличивается. Двигаясь быстрее, молекулы будут ударять о стенки сосуда чаще. Кроме того, каждый удар молекулы о стенку будет сильнее. Вследствие этого, стенки сосуда будут испытывать большее давление.

Следовательно, давление газа в закрытом сосуде тем больше, чем выше температура газа, при условии, что масса газа и объем не изменяются.

Из этих опытов можно сделать общий вывод, что давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда.

Для хранения и перевозки газов их сильно сжимают. При этом давление их возрастает, газы необходимо заключать в специальные, очень прочные баллоны. В таких баллонах, например, содержат сжатый воздух в подводных лодках, кислород, используемый при сварке металлов. Конечно же, мы должны навсегда запомнить, что газовые баллоны нельзя нагревать, тем более, когда они заполнены газом. Потому что, как мы уже понимаем, может произойти взрыв с очень неприятными последствиями.

Закон Паскаля.

В отличие от твердых тел отдельные слои и мелкие частицы жидкости и газа могут свободно перемещаться относительно друг друга по всем направлениям. Достаточно, например, слегка подуть на поверхность воды в стакане, чтобы вызвать движение воды. На реке или озере при малейшем ветерке появляется рябь.

Подвижностью частиц газа и жидкости объясняется, что давление, производимое на них, передается не только в направлении действия силы, а в каждую точку. Рассмотрим это явление подробнее.

На рисунке, а изображен сосуд, в котором содержится газ (или жидкость). Частицы равномерно распределены по всему сосуду. Сосуд закрыт поршнем, который может перемещаться вверх и вниз.

Прилагая некоторую силу, заставим поршень немного переместиться внутрь и сжать газ (жидкость), находящийся непосредственно под ним. Тогда частицы (молекулы) расположатся в этом месте более плотно, чем прежде(рис, б). Благодаря подвижности частицы газа будут перемещаться по всем направлениям. Вследствие этого их расположение опять станет равномерным, но более плотным, чем раньше (рис, в). Поэтому давление газа всюду возрастет. Значит, добавочное давление передается всем частицам газа или жидкости. Так, если давление на газ (жидкость) около самого поршня увеличится на 1 Па, то во всех точках внутри газа или жидкости давление станет больше прежнего на столько же. На 1 Па увеличится давление и на стенки сосуда, и на дно, и на поршень.

Давление, производимое на жидкость или газ, передается на любую точку одинаково во всех направлениях.

Это утверждение называется законом Паскаля.

На основе закона Паскаля легко объяснить следующие опыты.

На рисунке изображен полый шар, имеющий в различных местах небольшие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польется из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке. Частицы воды, находящиеся под поршнем, уплотняясь, передают его давление другим слоям, лежащим глубже. Таким образом, давление поршня передается в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде одинаковых струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить одинаковые струйки дыма. Это подтверждает, что и газы передают производимое на них давление во все стороны одинаково.

Давление в жидкости и газе.

На жидкости, как и на все тела на Земле, действует сила тяжести. Поэтому, каждый слой жидкости, налитой в сосуд, своим весом создает давление, которое по закону Паскаля передается по всем направлениям. Следовательно, внутри жидкости существует давление. В этом можно убедиться на опыте.

В стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой пленкой, нальем воду. Под действием веса жидкости дно трубки прогнется.

Опыт показывает, что, чем выше столб воды над резиновой пленкой, тем больше она прогибается. Но всякий раз после того, как резиновое дно прогнулось, вода в трубке приходит в равновесие (останавливается), так как, кроме силы тяжести, на воду действует сила упругости растянутой резиновой пленки.

Источник

Оцените статью
Разные способы