- Утилизация газообразных отходов производства
- Характеристика основных источников выброса газообразных отходов. Особенность отходящих технологических газов, продуктов сгорания из печей и парогенераторов. Использование пылеуловителей сухого и мокрого типа для удаления вредных газовых примесей.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Подобные документы
- Экология СПРАВОЧНИК
- Информация
- Утилизация и обезвреживание газообразных отходов
- Экология
- Промышленная экология
- 1. Классификация методов для обезвреживания газовых выбросов от различных примесей
Утилизация газообразных отходов производства
Характеристика основных источников выброса газообразных отходов. Особенность отходящих технологических газов, продуктов сгорания из печей и парогенераторов. Использование пылеуловителей сухого и мокрого типа для удаления вредных газовых примесей.
Рубрика | Экология и охрана природы |
Вид | доклад |
Язык | русский |
Дата добавления | 06.09.2016 |
Размер файла | 15,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
УТИЛИЗАЦИЯ ГАЗООБРАЗНЫХ ОТХОДОВ ПРОИЗВОДСТВА
Загрязнения попадают в атмосферу в результате природных процессов и хозяйственной деятельности человека. Уровень загрязнения атмосферы примесями от естественных источников является фоновым и имеет малое отклонение от среднего уровня во времени.
Естественным путем атмосфера загрязняется при извержении вулканов, лесных пожарах, пыльных бурях и др. При этом в атмосферу попадают твердые и газообразные вещества.
К примесям в атмосфере антропогенного происхождения относятся выбросы промышленных предприятий, автотранспорта, сельскохозяйственных предприятий, продукты сгорания топлива и сжигания отходов. Эти примеси характеризуются большой сосредоточенностью в пространстве, неоднородностью по составу и неравномерностью распределения. Характерной особенностью загрязнения воздуха в городах являются высокие концентрации специфичных загрязняющих веществ: оксидов азота, серы и углерода, сероводорода, углеводородов. Установлено, что каждые 10 — 12 лет объем мирового промышленного производства удваивается, а это сопровождается примерно таким же ростом объема выбрасываемых загрязнений в окружающую среду.
Примеси поступают в атмосферу в виде газов, паров, жидких и твердых частиц. Газы и пары образуют с воздухом смеси, а жидкие и твердые частицы — аэрозоли (дисперсные системы), которые подразделяются на пыль (размеры частиц более 1 мкм), дым (размеры твердых частиц менее 1 мкм) и туман (размер жидких частиц менее 10 мкм).
Основные источники выброса газообразных отходов:
— Выбросы промышленных предприятий.
— Нефтедобывающая, нефтеперерабатывающая и нефтехимическая отрасли
— Продукты сгорания топлива.
— Выбросы предприятий сельских районов, пестициды.
— Продукты сжигания мусора и отходов.
> Выбросы промышленных предприятий. Основными источниками загрязнения атмосферы являются тепловые электростанции, автотранспорт, предприятия черной и цветной металлургии, химической и нефтехимической промышленности, строительных материалов.
> Черная металлургия является источником диоксида серы, оксида углерода, марганца, небольших количеств соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и др. Выбросы цветной металлургии содержат мышьяк, свинец, оксиды азота и др.
> Нефтедобывающая, нефтеперерабатывающая и нефтехимическая отрасли являются источниками таких загрязнений, как углеводороды, кислые примеси, твердые частицы, химическая промышленность — пыли от неорганических производств, органических веществ, сероуглерода, хлористых соединений и др.
> Выбросы автотранспорта. Общее количество автомашин в мире составляет около 400 млн. Один автомобиль в среднем поглощает ежегодно 4 т кислорода и выбрасывает с выхлопными газами около 800 кг оксида углерода, до 40 кг оксидов азота и почти 200 кг различных углеводородов. В выхлопных газах содержатся также альдегиды (акролеин, формальдегид), кетоны, соединения свинца (всего 280 наименований),
> Продукты сгорания топлива. Процессы горения играют главную роль в образовании загрязнений атмосферы. В качестве топлива наиболее широко применяют нефть, уголь, природный и попутный газ, торф, сланцы. Основные продукты сгорания топлива — диоксид и оксид углерода. В результате окисления примесей, содержащихся в топливе, образуются также оксиды серы и азота.
> Выбросы предприятий сельских районов, пестициды. Загрязнителями воздуха являются животноводческие и птицеводческие фермы, комплексы по производству мяса, энергетические и теплосиловые предприятия. Основной источник загрязнения атмосферы в сельских районах — пестициды, особенно при неправильном хранении и авиахимической обработке посевов.
> Продукты сжигания мусора и отходов — источник выброса в атмосферу кислых компонентов. При сжигании мусора садовых и пищевых отходов образуется дым и появляются резкие запахи.
В группе газообразных отходов наибольшую долю составляют отходящие технологические газы, продукты сгорания из печей и парогенераторов, выбросы загрязненного воздуха из вентиляционных систем.
Газы содержат многочисленные соединения, в состав которых помимо углеводорода и водорода могут входить кислород, сера, азот, галогены.
Для удаления из отходящих газов вредных газовых примесей применяют абсорбцию, хемосорбцию, адсорбцию, термическое дожигание, каталитическую нейтрализацию.
Абсорбция — растворение вредной газовой примеси сорбентом, как правило, водой. выброс газообразный отход пылеуловитель
Метод хемосорбции заключается в том. что очищаемый газ орошают растворами реагентов, вступающих в химическую реакцию с вредными примесями с образованием нетоксичных, малолетучих или нерастворимых химических соединений.
Адсорбция — улавливание поверхностью микропористого адсорбента (активированный уголь, силикагель, цеолиты) молекул вредных веществ.
Термическое дожигание — окисление вредных веществ кислородом воздуха при высоких температурах (900-1200°С).
Каталитическая нейтрализация достигается применением катализаторов — материалов, которые ускоряют протекание реакций или делают их возможными при значительно более низких температурах (250-400°С).
В газообразных промышленных выбросах вредные примеси можно разделить на две группы:
а) взвешенные частицы (аэрозоли) твердых веществ — пыль, дым; жидкостей — туман
б) газообразные и парообразные вещества.
К аэрозолям относятся взвешенные твердые частицы неорганического и органического происхождения, а также взвешенные частицы жидкости (тумана).
Пыль — это дисперсная малоустойчивая система, содержащая больше крупных частиц, чем дымы и туманы.
Взвешенная в воздухе пыль адсорбирует ядовитые газы, образует плотный, токсичный туман (смог), который увеличивает количество осадков. Насыщенные сернистыми, азотистыми и другими веществами, эти осадки образуют агрессивные кислоты. По этой причине скорость коррозионного разрушения машин и оборудования во много раз увеличивается.
Защита атмосферы от вредных выбросов достигается рациональным размещением источников вредных выбросов по отношению к населенным зонам; рассеиванием вредных веществ в атмосфере для снижения концентраций в ее приземном слое, удалением вредных выделений от источника образования посредством местной или общеобменной вытяжной вентиляции; применением средств очистки воздуха от вредных веществ.
Рациональное размещение предусматривает максимально возможное удаление промышленных объектов — загрязнителей воздуха от населенных зон, создание вокруг них санитарно-защитных зон; учет рельефа местности и преобладающего направления ветра при размещении источников загрязнений и жилых зон по отношению друг к другу.
Для удаления вредных газовых примесей используются пылеуловители сухого и мокрого типа.
К пылеуловителям сухого типа относятся циклоны различных видов — одиночные, групповые, батарейные (рис. 1). Циклоны при
меняют при концентрациях пыли на входе до 400 г/м3, при температурах газов до 500°С.
Широкое применение в технике пылеулавливания нашли фильтры, которые обеспечивают высокую эффективность улавливания крупных и мелких частиц. В зависимости от типа фильтровального материала фильтры разделяются на тканевые, волокнистые и зернистые. Для очистки больших объемов газа применяют высокоэффективные электрофильтры.
Пылеуловители мокрого типа применяют для очистки высокотемпературных газов, улавливания пожаровзрывоопасных пылей и в тех случаях, когда наряду с улавливанием пыли требуется улавливать токсичные газовые примеси и пары. Аппараты мокрого типа называют скрубберами.
Размещено на Allbest.ru
Подобные документы
Описание существующих методов очистки воздуха от вредных газообразных примесей: абсорбционный и адсорбционный методы, термическое дожигание. Очистка отходящих газов на заводах технического углерода. Оборудование для биохимических методов очистки.
контрольная работа [36,0 K], добавлен 11.01.2012
Характеристика и основные физико-химические свойства золы и пыли. Методы определения запыленности газов. Аппараты сухой инерционной и мокрой очистки газов. Способы интенсификации работы пылеуловителей. Основы проектирования систем золоулавливания.
реферат [665,1 K], добавлен 26.08.2013
Особые виды воздействия на биосферу, загрязнение отходами производства, защита от отходов. Сжигание твердых отходов: диоксиновая опасность, плата за хранение и размещение отходов. Утилизация отдельных видов отходов и люминисцентных ламп, переработка.
курсовая работа [476,3 K], добавлен 13.10.2009
Анализ источников образования отходов производства и потребления на основных и вспомогательных производствах аэропорта. Основные технологии утилизации отходов, используемые в аэропортах России. Инсинератор для уничтожения отходов с воздушных судов.
курсовая работа [1,3 M], добавлен 24.09.2014
Типы бытовых отходов, проблема утилизации. Биологическая переработка промышленных отходов, отходов молочной промышленности. Отходы целлюлозно-бумажной промышленности. Переработка отходов после очистки воды. Переработка ила, биодеградация отходов.
курсовая работа [78,1 K], добавлен 13.11.2010
Классификация твердых отходов. Объемы образования отходов в промышленности. Возможности и пределы утилизации отходов. Утилизация промышленных токсичных отходов. Полигоны для захоронения отходов. Технологическая схема работы полигона.
курсовая работа [82,3 K], добавлен 08.05.2003
Общая характеристика утилизации и вариантов использования отходов металлургического комплекса и химического производства в промышленности. Основные направления утилизации графитовой пыли. Оценка золошлаковых отходов как сырья для строительных материалов.
реферат [27,6 K], добавлен 27.05.2010
Источник
Экология СПРАВОЧНИК
Информация
Утилизация и обезвреживание газообразных отходов
В группе газообразных отходов наибольшую долю составляют отходящие технологические газы, продукты сгорания из печей и парогенераторов, выбросы загрязненного воздуха из вентиляционных систем. Газы содержат многочисленные соединения, в состав которых помимо углеводорода и водорода могут входить кислород, сера, азот, галогены.[ . ]
Очистка выбрасываемых в атмосферу газов от этих соединений может быть достигнута их сжиганием при высоких температурах (900-1000 °С), однако такой способ требует больших затрат первичного топлива, что особенно нерентабельно при обезвреживании газов с малым содержанием вредных веществ. В связи с этим получила применение каталитическая очистка, осуществляемая при более низкой температуре (до 300-400 °С). Рассмотрим примеры каталитической очистки различных газовых выбросов.[ . ]
Активные компоненты катализаторов, используемых для очистки отходящих газов, можно разделить на три группы: благородные металлы, сплавы и оксидные системы. Катализаторы должны окислять более 90% (об.) СО и углеводородов в широком интервале температур (250-800 °С) в присутствии воды (около 15%) и не должны отравляться соединениями серы. Наиболее распространены платиновые катализаторы вследствие способности их ускорять самые различные реакции превращения органических соединений в окислительных и восстановительных средах (окисление, гидрирование).[ . ]
Для обезвреживания газов используются и более дешевые таблетированные катализаторы на основе оксидов неплатиновых металлов (N1, Си, Сг, Мп).[ . ]
При глубоком окислении примесей выделяется тепло, количество которого зависит от природы окисляемых веществ и концентрации их в очищаемых газах. Реактор с утилизацией тепла и стационарным слоем катализатора для очистки вентиляционных выбросов от токсичных органических веществ, которые превращаются в диоксид углерода и воду, показан на рис. 4.21.[ . ]
Загрязненный воздух отсасывается из помещения цеха или от технологического оборудования через канал 1 вентилятором 3. Пройдя через огнепреградитель 2, загрязненный воздух под давлением до 3000 Па направляется в межтрубное пространство рекуператора 4, где предварительно нагревается теплом уходящих газов до 200 °С. Нагретый воздух поступает в смесительнопроточный воздухоподогреватель 6, где его температура повышается до 250-400 °С за счет смешения с продуктами сгорания природного газа, подаваемого в горелку 5. Обезвреженный в слое катализатора воздух поступает в трубы рекуператора 4, отдает тепло загрязненному воздуху и выбрасывается через выходную трубу 8 в атмосферу или используется в качестве сушильного агента или теплоносителя в технологическом процессе.[ . ]
Недостатками реакторов со стационарным слоем катализатора и утилизацией тепла при обезвреживании газов с небольшим содержанием органических примесей является сложность и металлоемкость конструкции. От всего объема реакторного узла на долю катализатора приходится менее 5%, а остальной объем занимают теплообменник и различные распределительные устройства и т. п.[ . ]
Новые возможности открывает использование каталитических реакторов обезвреживания газов с нестационарным режимом. Одним из способов реализации нестационарного режима может быть переключение направления подачи газа в слое катализатора (рис. 4.22).[ . ]
Катализатор в реакторе 1 предварительно прогревают потоком газа, для чего служит пусковой подогреватель 2. После прогрева слоя обезвреживаемый газ подается с низкой температурой в направлении, указанном сплошными стрелками, для чего в блоке 3 открывают клапаны 5 и 6, закрывают клапаны 4 и 7. Газ проходит реактор сверху вниз. Холодный газ нагревается в горячем слое катализатора, охлаждая первые по ходу газа участки слоя. В сечении слоя, где газ достаточно прогрелся, протекает экзотермическая реакция окисления примесей (зона реакции), и температура в слое повышается. Со временем зона реакции продвигается к выходу из слоя (вниз). Изменение температурного профиля в слое показано на графике на рис. 4.22.[ . ]
Источник
Экология
Промышленная экология
Оценка загрязнения воздуха и его влияние на человека
Чистым считается такой воздух , в котором соединения основных компонентов находятся в пределах норм, а концентрация вредных примесей не превышает допустимых пределов.
Для каждой из таких примесей устанавливается предельно допустимая концентрация (ПДК).
ПДК – максимальное содержание вредных веществ, которое при действии на организм человека в течение заданного промежутка времени не вызывает необратимых изменений в нем, включая последующие поколения.
ПДК – это интегрированный показатель. Различают ПДК рабочей зоны, в воздухе населенных мест, максимально разовую, среднесуточную.
ПДК в воздухе населенных мест установлена для максимального разового и среднесуточного значений.
ПДК рабочей зоны (ПДКр.з) – это такая максимальная концентрация вредного вещества, которая при ежедневной работе в течение 8 ч (но не более 41 ч в неделю) всего рабочего стажа не может вызвать заболевания или отклонения в состоянии здоровья в процессе работы или в отдаленные сроки жизни настоящего и будущего поколений.
ПДК максимально разовая (ПДКм.р) – это максимальное количество вредных выбросов в атмосферу в течение 30 мин, которое не приводит к превышению их концентрации в населенном пункте среднесуточной ПДК.
Среднесуточная ПДК (ПДКс.с) – это максимальная концентрация вредного вещества в атмосфере, которая при воздействии на организм человека в течение всей его жизни не оказывает на него вредного влияния, включая отдаленные последствия.
По величине эти показатели располагаются в ряд следующим образом:
ПДКс.с ПДВ – максимальные выбросы в единицу времени для данного природопользователя по данному компоненту, которые создают в приземном слое атмосферы концентрацию этого вещества Сi, не превышающую ПДК с учетом фонового загрязнения Сф и эффекта суммации веществ однонаправленного действия.
Концентрацию (мг/м 3 ) принимают по данным центра санитарно эпидемиологического надзора (ЦСЭН). Величину (мг/м 3 ) для данного природопользования рассматривают по определенным методикам, учитывая условия рассеивания и массу выбросов (г/с). Та максимальная масса, при которой выполняется условие по ПДК и будет ПДВi. При расчете веществ однонаправленного действия используют специальные таблицы и методики.
Однонаправленными вредными веществами являются окислы серы и азота и различные соединения серы.
В случае, если данный природопользователь не может достичь величины ПДВ, назначаются временно согласованные выбросы (ВСВ) с обязательным установлением графика их постепенного снижения до ПДВ и разработкой конкретных мероприятия для этого. Не назначаются ПДВ только для веществ, действие которых недостаточно изучено и для которых вместо ПДК временно вводится ориентировочно безопасный уровень воздействия – ОБУВ.
1. Классификация методов для обезвреживания газовых выбросов от различных примесей
Выбор метода очистки воздуха от промышленных выбросов зависит от многих факторов:
- вида выбрасываемой примеси;
- дисперсного состава примесей при выбросах, представляющих собой гетерогенные системы;
- концентрации извлекаемого компонента в выбросе;
- объема и температуры выброса;
- требуемой степени очистки;
- возможности использования продуктов рекуперации.
Выбор воздухоочистного аппарата или сооружения проводят на основании результатов расчетов их экономической эффективности.
Физические методы очистки газов
Как правило, пылеулавливающие аппараты условно делят на следующие группы:
- Сухие или механические пылеуловители, в которых частицы пыли отделяются из газового потока при помощи механических сил. Чаще всего используются циклоны различных конструкций и инерционные пылеуловители. Улавливание в циклонах происходит за счет центробежных сил, а в инерционных аппаратах за счет инерции частиц пыли при резком изменении направления газового потока. Эти аппараты могут быть использованы или самостоятельно, если частицы пыли достаточно крупные, или в качестве первой ступени очистки перед более эффективными аппаратами для снижения на них нагрузки;
- аппараты мокрой очистки, в которых производится промывка запыленного газа жидкостью или осаждение частиц пыли на жидкую пленку. Для осуществления первого варианта мокрой очистки запыленный поток промывают диспергированной жидкостью. Во время промывки частицы пыли захватываются каплями жидкости и выводятся из газового потока. В зависимости от способа диспергирования жидкости мокрые пылеуловители делят на три группы:
- форсуночные скрубберы, в которых диспергирование жидкости осуществляется с помощью форсунок, за счет энергии насоса;
- скрубберы Вентури, в которых дробление жидкости осуществляется за счет энергии турбулентного потока;
- динамические газопромыватели, где разбрызгивание жидкости осуществляется за счет механической энергии вращающегося ротора.
Аппараты мокрой очистки желательно применять на производствах, имеющих систему очистки воды, если же такой нет, то лучше по возможности использовать аппараты сухой очистки;
- фильтры, которые задерживают пыль при прохождении через них очищаемого газа.
- Фильтрация аэродисперсных систем через пористые перегородки является одним из наиболее совершенных способов выделения взвешенных твердых и жидких частиц из газового потока.
В пылеулавливании применяются тканевые, волокнистые, зернистые и другие фильтры. Осаждение происходит за счет непосредственного касания частиц пыли волокон (нитей) или зерен фильтрующей перегородки, действия сил инерции, диффузии и электростатического притяжения;
- электрофильтры, в которых отделение частиц пыли происходит под действием электрических сил (в коронном разряде). Запыленный газовый поток проходит через сильное электрическое поле, частицы пыли получают электрический заряд и ускорение, что заставляет их двигаться вдоль силовых линий поля с последующим осаждением на электродах. Электрофильтры для очистки газов от пыли работают обычно при постоянном напряжении, могут быть сухими и мокрыми, иметь одну зону, в которой происходит зарядка и осаждение частиц пыли, или несколько зон, где зарядка и осаждение осуществляются в разных зонах. Кроме того, электрофильтры бывают пластинчатые и трубчатые.
Эффективность работы электрофильтров достаточно велика и обеспечивает степень улавливания более 90%, причем эффективность улавливания частиц пыли размером 1 мкм достигает 88%.
Физико-химические методы очистки газов
Газообразные загрязнители удаляют из промышленных выбросов при помощи физико-химических или химических методов. Существует пять основных методов удаления газообразных загрязнителей: абсорбция, адсорбция, конденсация, сжигание горючих загрязнителей и химическая обработка.
1. Абсорбция. Метод основан на подборе такой жидкости, при прохождении через которую вредная примесь переходит в жидкую фазу абсорбента, растворяясь в нем без химических взаимодействий и образования новых химических веществ – это физическая абсорбция. В тех случаях, когда абсорбенты вступают в химические реакции с очищаемым газом, например при очистке природных газов от сероводорода, диоксида углерода, диоксида серы с помощью водных растворов слабых оснований – аммиака, анилина, ксилидина, происходит процесс, называемый химической абсорбцией
Абсорбция протекает на поверхности раздела фаз в аппаратах, называемых абсорберами, поэтому абсорберы должны иметь развитую поверхность соприкосновения между газом и жидкостью. По способу образования этой поверхности абсорберы можно условно разделить на поверхностные, распыливающие и барботажные.
Поверхностные абсорберы поглощают газ пленкой жидкости, образующейся на поверхностях, смачиваемых жидкостью и омываемых газом. В таких абсорберах газ проходит над поверхностью неподвижной или медленно движущейся жидкости. Примером пленочного абсорбера может служить трубчатый абсорбер, в котором жидкость стекает сверху вниз по внутренней поверхности труб, омываемых поднимающимся снизу вверх газом.
В качестве насадочных абсорберов широкое распространение получили колонны, заполненные насадкой – твердыми телами различной формы. В насадочной колонне насадка укладывается на опорные решетки, имеющие отверстия или щели для прохождения газа и стока жидкости. Жидкость в насадочной колонне течет по элементу насадки в виде тонкой пленки, но течение жидкости происходит только по элементу насадки, а не по всей высоте аппарата. При перетекании жидкости с одного элемента на другой пленка жидкости разрушается.
Барботажные абсорберы представляют собой обычно вертикальные колонны, внутри которых размещены горизонтальные перегородки – тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.
В распыливающих абсорберах контакт между фазами достигается путем распыливания или разбрызгивания жидкости в газовом потоке.
2. Адсорбция – это диффузный процесс, в котором повышенная концентрация отделяемого газообразного вещества образуется на границе раздела фаз в результате связывания этих веществ на поверхности твердого или жидкого соединения. Если между молекулами адсорбированного вещества и адсорбента не происходит химических реакций, то подобный процесс относится к физической адсорбции, в отличие от хемосорбции, когда происходит перенос или объединение электронов адсорбента и адсорбата, как у химических соединений.
При физической адсорбции адсорбированное вещество можно полностью удалить при обратном процессе (десорбции), например, понизив давление или увеличив температуру, а хемосорбированное вещество вернуть в газовую фазу невозможно, т.к. процесс необратим.
В промышленности в качестве поглотителей чаще всего применяют активные угли и минеральные адсорбенты (силикагель, цеолиты и др.), а также синтетические ионообменные смолы (иониты).
3. Конденсация может быть применена для обработки систем, содержащих пары веществ при температурах, близких к их точке росы. Этот метод наиболее эффективен в случае углеводородов и других органических соединений, имеющих достаточно высокие температуры кипения при обычных условиях и присутствующих в газовой фазе в относительно высоких концентрациях.
Конденсацию можно проводить при непосредственном контакте или косвенном охлаждении. В первом случае охлаждаемый пар непосредственно контактирует с охлажденной или замороженной жидкостью. При косвенном охлаждении используется поверхностный конденсатор с металлическими трубками. Трубки охлаждаются жидким хладореагентом с другой стороны стенки.
4. Очистка газов дожиганием представляет собой метод очистки газов путем термического окисления углеводородных компонентов до СО2 и Н2О. Это определение может быть полностью отнесено и к жидким отходам. В ходе процесса другие компоненты газовой смеси, например, галоген- и серосодержащие органические соединения, также претерпевают химические изменения и в новой форме могут эффективно удаляться или извлекаться из газовых потоков. С точки зрения охраны окружающей среды очистка газов методом дожигания обеспечивает требуемую чистоту выбросов в атмосферу с минимальным содержанием непрореагировавших углеводородов, оксидов азота и серы, галогенов и других органических соединений.
5. Химические методы очистки отходящих газов. Устранение нежелательных компонентов в газах с использованием химических методов означает, что в основе процесса лежит химическая реакция, и ее роль является преобладающей по сравнению с процессами адсорбции, абсорбции, конденсации или сжигания. В большинстве случаев, однако, технология сочетает в себе несколько операций и достаточно сложно классифицировать метод очистки в соответствии с перечисленными физико-химическими методами.
Источник